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Abstract: Visual localization and mapping algorithms attempt to estimate, from images, geometrical
models that explain ego motion and the positions of objects in a real scene. The success of these tasks
depends directly on the quality and availability of visual data, since the information is recovered from
visual changes in images. Keyframe selection is a commonly used approach to reduce the amount
of data to be processed as well as to prevent useless or wrong information to be considered during
the optimization. This study aims to identify, analyze, and summarize the methods present in the
literature for keyframe selection within the context of visual localization and mapping. We adopt a
systematic literature review (SLR) as the basis of our work, built on top of a well-defined methodology.
To the best of our knowledge, this is the first review related to this topic. The results show that there
is a lack of studies present in the literature that directly address the keyframe selection problem in
this application context and a deficiency in the testing and validation of the proposed methods. In
addition to these findings, we also propose an updated categorization of the proposed methods on
top of the well-discussed categories present in the literature. We believe that this SLR is a step toward
developing a body of knowledge in keyframe selection within the context of visual localization and
mapping tasks by encouraging the development of more theoretical and less heuristic methods and a
systematic testing and validation process.

Keywords: keyframe selection; visual localization; visual mapping; visual SLAM; robotics; computer vision

1. Introduction

Visual localization and mapping can be defined as the tasks of recovering the position
and attitude of objects from images and building a virtual representation of the world from
multiple scenes relative to a reference frame [1].

Common localization methods are dead reckoning-based, usually supported by iner-
tial sensors, lasers, and tachometers, or rely on Global Positioning Systems (GPS). These
methods suffer from classic problems of incremental error accumulation, drift, low accuracy,
sparseness or lack of information, and the high cost of better-quality sensors. On the other
hand, vision-based methods use cameras, which are highly available and low-cost, have
low power consumption, can be easily mounted on other devices, and provide a large
amount of data of the scene. Due to these advantages, vision-based methods have become
a hot topic in recent years, especially for applications of virtual and augmented reality,
robotics, and autonomous driving [1–3].

Mapping and localization are essential in any application that requires dealing with
environment perception and position estimation relative to its surroundings [4]. Despite
being considered independent tasks, they are closely related. For an agent (e.g., smart-
phone, human, vehicle, or robot) to be able to self-localize in an environment, a map of
its surroundings should be provided, while to create a map of the environment, its pose
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should be known. When the agent does not have access to a map and does not know its
own pose, the problem is addressed by Simultaneous Localization and Mapping (SLAM),
where both localization and mapping are executed simultaneously. SLAM provides better
results when compared to solving both localization and mapping independently.

Vision-based methods are based on geometric estimation models of the world that
explain its changes from perceived visual data [5]. These models are usually solved as
a nonlinear optimization problem whose complexity depends on the number of poses
and perceived data to be fitted. As a result of the abundant information provided by the
images, its processing can be computationally expensive, which makes the execution of
these applications in real time quite challenging. One strategy to attenuate the computation
load is by not processing all the frames, since consecutive frames from a video sequence
are usually captured with a high degree of overlap; Figure 1.

Figure 1. Illustration of selected keyframes from a vehicle’s captured video [6]. The keyframes are
uniformly distributed when the car drives straight along the street, and more frequently at the turning
corners because the consecutive frames tend to be less similar.

The subset of a video sequence that can represent its visual content as closely as
possible with a reduced amount of frame information is usually called a keyframe set.
The keyframe selection problem has been extensively studied in video analysis and image
retrieval applications, where videos are segmented into shots to aid its indexing, annotation,
compression or retrieval from a database given a similar query image [7]. In vision-based
localization and mapping methods, keyframes can be selected to achieve sufficient visual
coverage of the environment while keeping its representation simple for computational
efficiency. Moreover, by carefully selecting this subset of keyframes, we can prevent useless
or wrong information from being considered during the optimization, thus avoiding
degenerative configurations from ill-conditioned systems; Figure 2.
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Figure 2. This figure illustrates the result of dense pairwise reconstruction. The left image shows the
result obtained from a carefully selected pair of keyframes, while the right image shows the result
from a degenerate pair [8].

Despite being considered an essential factor for the visual localization and mapping
algorithm performance [3], keyframe selection does not receive as much attention as other
key techniques such as feature detection and matching [9], uncertainty modeling [1], and
map modeling [10]. Executing pilot searches on the most popular digital libraries in the area
of computer science and robotics, we could not find any comprehensive reviews related to
this topic. There are few studies that completely cover the problem of keyframe selection
for these applications, even though several studies employ the keyframe selection strategy
in their algorithms. Furthermore, the design of the methods is still much less theoretical
and more heuristic. The lack of studies about keyframe selection for visual localization and
mapping tasks motivated us to summarize all existing information about this topic in a
careful and unbiased manner.

In this paper, we present a systematic literature review (SLR) aiming to identify and
analyze the commonly used approaches for keyframe selection within the context of visual
localization and mapping. The results of this SLR are a step toward developing a deep
understanding of this topic and assisting in the formulation of new hypotheses, derived
from a well-defined methodology. Moreover, bring up a discussion about the importance
of keyframe selection in visual localization and mapping tasks and how this area can be
deeply investigated.

The remainder of this paper is organized as follows: Section 2 presents some back-
ground to visual localization and mapping and related work. Section 3 presents the research
methodology adopted to conduct this SLR. The results and discussions related to the re-
search questions are presented in Section 4. Finally, in Section 5, we present the conclusions
and findings of this review.

2. Background and Related Work

To the best of our knowledge, this is the first review with a specific focus on keyframe
selection for visual localization and mapping tasks. In this section, we first present a brief
overview of visual localization and mapping algorithms, then present closely related work
on keyframe selection present in the literature.

2.1. Visual Localization and Mapping

Mapping and localization are essential problems in any application that requires
an agent (e.g., a smartphone, human, vehicle, or robot) to localize itself in an unknown
environment [4]. Mapping is the process of generating a globally consistent model of the
environment from local observations of it, while localization is the process of estimating
the pose of the agent within the map according to the sensor data perceived from the
environment. Even though they can be executed as independent tasks, they are closely
related. In order to build a map, the agent and the structure poses need to be known
in order to compute the 3D position of the objects in the scene, while in localization, a
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map of the environment must be available so that the pose can be computed against
the map’s reference. To solve this egg-and-chicken problem, simultaneous localization
and mapping (SLAM) techniques have been proposed. In SLAM, both localization and
mapping are executed simultaneously, where a map of an unknown environment is created
incrementally while localizing the agent within the map.

In computer vision, the problem of recovering relative camera poses and the 3D struc-
ture of the environment from images is known as structure From motion (SFM). Usually,
SFM is formulated as a Perspective-n-Point problem, where both the 3D reconstruction
of the scene and the 3D motion of the camera are estimated from sequentially ordered or
unordered image sets [5]. The final scene structure and camera poses are refined with an
offline optimization called bundle adjustment, in which the camera parameters and 3D
points are adjusted to minimize every error term in the process, as much as possible, in a
batch manner [5]. In general, all the image-based localization and mapping algorithms
have their principles derived from SFM applications.

Visual odometry (VO) is a particular case of SFM that focuses on estimating the
egomotion of an agent through examination of the changes that motion induces on images
captured by a single or multiple cameras attached to it. Differently from SFM, in VO,
we are not concerned with the 3D structure; the camera’s 3D motion is incrementally
estimated (i.e., as new frames arrive), and it is usually required to be executed in real
time [11]. The term VO was coined by Nister [12] due to its similarity to wheel odometry,
which estimates the position of a wheeled agent by integrating the number of turns of
its wheels over time. The VO process has the advantage of not being affected by wheel
slip, and it is independent of the agent kinematics. VO algorithms can be classified, based
on the input data, into direct [13] and feature-based [14] methods. Direct methods use
image pixel intensity for motion estimation by photometric error minimization, whereas
the feature-based approach relies on the geometric consistency of features extracted from
the images, such as SIFT [15], ORB [16], and SURF [17].

VO is a dead reckoning process, since the camera’s 3D motion is incrementally esti-
mated by integrating the current estimation with the previous estimation. Consequently,
the VO process is prone to drift accumulation due to errors introduced by each frame-to-
frame motion estimation. A straightforward solution to keep drift as small as possible
is through a local optimization over the last n camera poses, known as sliding window
bundle adjustment or windowed bundle adjustment. Even though the drift could be con-
siderably reduced using this approach, we still obtain a local consistency of the camera
trajectory. To obtain a global and consistent estimate of the camera trajectory, a global map
optimization is normally performed using a SLAM strategy. The visual SLAM (VSLAM)
approach is a particular case of SLAM that has only visual information as input. By keeping
the track of the map, the system can detect when the agent has returned to a previously
visited area and the accumulated error from the first to the current frame can be computed.
This process is defined as loop closure, in which the current frame is matched with the
previously acquired images, and if a closed loop is detected (i.e., the camera captures one
of the previously observed views), loop constraints are used to suppress the error in the
global optimization in a global bundle adjustment procedure [2].

The VSLAM algorithms can be divided into two main blocks: the front-end module,
which normally implements a VO strategy to recover the incremental motion of the camera;
and the back-end module, which executes the global optimization step whenever a loop
closing is detected to obtain a globally consistent map. The front end is more related to
the computer vision research fields, while the back end is essentially a state estimation
problem that can be implemented using filter-based approaches such as the extended
Kalman filter (EKF) or nonlinear optimization methods such as bundle adjustment (BA) [3].
The topics addressed in this review are more related to the BA-based VSLAM methods,
also known as keyframe-based VSLAM. These methods formulate the VSLAM as a graph
optimization problem, where the nodes represent all the poses and all the features in the
map, and edges correspond to nonlinear constraints. The graph leads to a sum of nonlinear
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quadratic constraints that, when optimized, yields to a maximum likelihood map and a
corresponding set of camera poses [4].

2.2. Related Work

The use of visual sensors for localization and mapping tasks has become an active re-
search topic due to their high accuracy, low cost, and abundant data information. Moreover,
it has attracted much attention from both the academic and industrial communities due to
its potential applications and problem challenges, as well as because cameras are sensors
suitable to be mounted on devices such as tablets, smartphones, and robots. Therefore,
image-based localization and mapping algorithms have great and widespread applications,
such as virtual reality, augmented reality, robotics, and autonomous driving [2].

Due to the amount of data provided by images, their processing can be computation-
ally expensive. On the other hand, frames from a video sequence are usually captured
continuously with a high degree of overlap; thus, there is no need to process all of them.
The subset of a video sequence that can represent its visual content as closely as possible
with a reduced number of frame information is usually called keyframes. The keyframe
selection problem has been extensively studied in video analysis and content-based image
retrieval (CBIR) applications [7]. The former comprises methods that are concerned with
the problem of segmenting a video into shots for its indexing, annotation, or compres-
sion, whereas the latter consists of methods that address the issue of retrieving images
from a database that are similar to a query image based on an analysis of their contents.
In general, keyframe selection techniques can be broadly classified into global [18] and
sequential [19] data analysis. Usually, global analysis employs cluster or energy-based
methods to examine the entire video sequence; therefore, they are not applicable to online
applications such as visual localization and mapping. Contrarily, sequential approaches
perform the analysis considering the video frames one at a time, which is more appropriate
for online applications.

The complexity of the algorithms for visual localization and mapping that relies on
bundle adjustment such as nonlinear optimization depends on the number of poses and
features to be optimized. Thus, keyframe detection plays an important role in order to
achieve a sufficient visual coverage of the robot’s environment while keeping the represen-
tation simple for computational efficiency. Moreover, keyframe selection can be used as a
filter to prevent useless or wrong information from being considered in the optimization,
avoiding an ill-conditioned system [20].

Even though keyframe selection is considered one of the critical techniques in VSLAM
algorithms [3], no reviews or surveys about this topic were found in automated searches.
A low number of articles were found that review the most commonly used methods;
some even proposed some categorizations, but without giving an in-depth analysis of all
methods present in the literature [20–23]. Zhang et al. [20] presented one of the first and
more complete studies concerned with the problem of keyframe selection for appearance-
based visual SLAM. They investigated the applicability of keyframe selection techniques
for CBIR applications in SLAM and a systematic comparison of the proposed methods.
Nonetheless, they focused in only one category of keyframe detection methods.

3. Systematic Literature Review Methodology

This research is based on the guidelines proposed by Kitchenham and Charters [24] for
undertaking systematic literature reviews (SLR). The proposed methodology instructs on
how to perform an SLR that is appropriate to the needs of software engineering researchers,
which the authors argue is not as generally rigorous as those used by medical researchers.

According to the guidelines proposed by Kitchenham and Charters [24] the stages
in a systematic review can be summarized into three main phases: planning the review,
conducting the review, and reporting the review. The stages associated with each phase
will be addressed in the following sections. Although they will be addressed sequentially,
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many of the stages involve iteration, e.g., activities initiated during the planning phase
could be refined during the conduction phase.

3.1. Planning the Review

The main stage of the planning is the development of the review protocol, which
specifies the methods that will be used to undertake the systematic review. The motivation
for developing a review protocol is to reduce the possibility of research bias. For this
research, the review protocol consists of the definition of the objectives, research questions,
keywords and synonyms, selection sources, search strings, the inclusion and exclusion
criteria, a quality assessment checklist, and data extraction forms.

The purpose of this systematic review is to identify and analyze the approaches
used for keyframe selection within the context of visual localization and mapping. Al-
though keyframe selection is a common step in those tasks, the design of the methods
is still much less theoretical and more heuristic. Furthermore, there is not a clear and
consistent definition of the keyframe in those contexts. Executing pilot searches on the most
popular digital libraries in the areas of computer science and robotics, we could not find
any SLRs or surveys related to this topic. This was a motivation to summarize all existing
information about keyframe selection techniques for visual localization and mapping tasks
in a careful and unbiased manner. With the collected information, we aim to answer the
research questions described in Table 1.

Table 1. Research Questions and Motivation.

Research Question Motivation

RQ1. Which techniques are being used most
for keyframe detection in visual localization
and mapping tasks?

To identify and analyze the primary keyframe
selection methods proposed in the literature.

RQ2. Which kinds of properties are used in
keyframe classification?

To identify which kind of information the
methods use to classify a frame as a keyframe.

RQ3. What is the role of keyframes in visual
localization and mapping tasks?

To analyze the benefits of the keyframe
selection stage on the pipeline of those tasks.

RQ4. How can we evaluate the keyframe
selection method?

To identify methods and metrics used to
quantitatively or qualitatively evaluate the
keyframe selection methods.

From the pilot searches, we could identify some primary studies that addressed most
of the research questions. These studies were used to extract some keywords, synonyms,
and alternative spellings that were used to define the search string. The search method
consisted of web searches in digital libraries; the selected resources chosen were ACM
Digital Library, IEEE Digital Library, Science Direct, and Springer Link.

Given the similarity with content-based image retrieval and video summarization
studies, we also conducted pilot searches to refine the search string iteratively. Moreover,
we realized that there could be relatively few studies that directly address the topic, so we
decided not to restrict the search too much. The process consisted of excluding keywords
whose inclusion did not return additional papers or the primary studies previously found
while trying to retain a reasonable number of returned papers. After several iterations,
we defined the following search string used to search within keywords, titles, abstracts,
and full text of publications:

(“keyframe selection” OR “keyframe extraction” OR “keyframe detection”) AND
(visual OR localization OR SLAM) NOT “video summarization”).

From the pilot’s search it was observed that selection, detection, and extraction are
commonly used as synonyms. Studies related to video summarization applications were
excluded because the extraction goals are different from the tasks of localization and mapping.
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To identify the primary studies that provide direct evidence about the research ques-
tions, we defined some study selection criteria. They were defined during the protocol
definition and refined during the search process. In summary, we decided to include any
study that directly or indirectly addresses the problem of keyframe selection for visual
localization and mapping tasks, as well as related issues, e.g., structure from motion, 3D
reconstruction, and VR/AR. For exclusion, the following criteria were used:

• Studies that do not address the problem of keyframe selection;
• Studies that do not describe the methodology used for keyframe selection;
• Studies whose methods are not visual-based;
• Redundant papers of the same authorship.

In addition to the selection criteria, a quality checklist was created to assess each
included article, in which the quality of the paper was measured based on the questions
listed in Table 2. Following the guidelines proposed by Kitchenham and Charter [24], the
questionnaire was elaborated with the aim of investigating whether quality differences
explain differences in study results, as a means of weighting the importance of individual
studies and to guide recommendations for further research.

Table 2. Study quality assessment questions.

ID Questions

QA1 Does the study directly address the problem of keyframe selection?
QA2 Does the study answer our research questions?
QA3 Are the methods clearly defined?
QA4 Do they use any metric to validate the method?
QA5 Do they use a specific datasets for validation?
QA6 Does the study compare the proposed method against other methods?
QA7 Does the study discuss the results obtained with the proposed method?

To address the quality assessment, we designed a digital extraction form to collect all
the information needed. Moreover, the data extracted grant that we accurately record any
information needed to answer the research questions. The fields of the data extraction form
and their description are presented in Table 3.

Table 3. Data extraction form.

Data Field Description

Title, year, authors Main information about the publication.

Source Name of the source where the article was published, e.g., journal,
conference, magazine, etc.

Key terms Terms that are used to synthesize the main ideas of the study.

Objective of the study The main purpose of the work, what kind of problem they are
trying to solve.

Method description Detailed description of the proposed keyframe selection method
to differentiate studies that use the same approach.

Motivation The motivation behind the proposed keyframe selection method
to identify the role of the proposed method.

Materials List of the materials used in the experiments, e.g., datasets, sen-
sors, metrics, etc.

Experiment description Detailed description about the experiments’ conduction and vali-
dation.

3.2. Conducting the Review

We adopted the Parsifal online tool [25] to support the protocol definition and SLR
conduction, which was designed within the context of software engineering. As pointed out
earlier, most of the stages in the conducting phase were defined and piloted in the planning
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phase and refined during the SLR conduction. This phase consisted of the following stages:
study selection, data extraction and synthesis, and study quality assessment.

The pilot searches executed during the search string definition indicate that there
could be relatively few studies that directly address the problem of keyframe selection for
visual localization and mapping tasks. Therefore, the search string was defined to retrieve
a reasonable number of articles that could be filtered in a multistage process. The number
of articles included in each stage is presented in Table 4.

Table 4. Number of articles selected per stage.

Library Stage 1 Stage 2 Stage 3

ACM Digital Library 131 16 6
IEEE Digital Library 64 29 26

ScienceDirect 93 18 11
Springer Link 210 31 18

Total 498 94 61

The first stage consists of the result obtained from the automatic search in each digital
library; no filters were applied in this stage. With the Parsifal tool, we can import bibtex
files, which allow information about the article publication and the abstract to be retrieved
without having to access a full copy of the article. Some libraries do not support bibtex files;
thus, it was necessary to manually import that information into Parsifal.

The filtering process begins in the second stage, where duplicated articles were re-
moved, and by reading the titles and abstracts, we applied the inclusion and exclusion
criteria. For a fraction of the imported studies, the abstracts provided sufficient information
to decide whether to include or not. For those articles that we could not apply the selection
criteria to by reading the abstracts, we downloaded a full copy for more detailed analysis
in the next stage.

During the final stage, we also applied the inclusion and exclusion criteria after reading
the introduction, the methodologies, and conclusions sections of the articles. At the end
of this stage, 61 primary studies were selected for this review, in which we executed the
data extraction and analysis, as well as the quality assessment. This process is detailed in
Figure A1, accordingly to the PRISMA flow diagram [26].

The definitions of the data to be extracted that are listed in Table 3 were based on the re-
search questions and other requirements for this review. As already mentioned, the article’s
metadata were automatically extracted from the Parsifal online tool. The metadata consist
of the title of the article, abstract, keywords, the source where it was published, the year
of publication, the names of the authors, and the DOI. Since the data were automatically
detected, they were subject to errors; thus, each included article was individually revised,
and the needed corrections were made.

A full reading and detailed extraction were performed to complete the remaining
fields of the data extraction form. The key terms were used to synthesize the main ideas
extracted from the reading; in contrast to the author’s keywords, they are exclusively
related to the purpose of this review. The objective of the study is to provide context to
where the keyframe selection was applied; as pointed out earlier, some primary studies
do not directly address the problem of keyframe selection, but they address it within a
given context as a step to solve a specific problem. The method description contains details
regarding the proposed keyframe selection method, describing its main characteristics and
structure, with enough information to differentiate between studies with the same approach.
The motivation is related to the objective of the study; it is what motivated the authors to
apply the keyframe selection step as means of identifying the role of the proposed method
in the pipeline. The materials field was used to list everything used in the validation of the
proposed method, e.g., datasets used, metrics, methods used for comparison, and the kind
of sensor used. The experimental description field contained detailed information about the
experiment’s conduction and validation. It is where we described how the materials were
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used to validate the proposed method, which tasks were executed, relevant information
about the setup, and the key results obtained with the proposed method.

Besides the data extraction, we assessed the quality of the primary studies based on
the quality assessment (QA) checklist presented in Table 2, to assist the data analysis and
synthesis. The QA questions were judged against three possible answers with a defined
weight score: “Yes” with a weight of 1, “Partially” with a weight of 0.5, and “No” with
a weight of 0. These weights were defined during the planning phase, and the quality
score for a particular study was computed by taking the sum of the scores of each answer.
The main goal of the quality assessment was to evaluate the credibility, completeness,
and relevance of the study regarding the research questions. The articles with higher scores
are more relevant to this review.

QA1, “Does the study directly address the problem of keyframe selection?” aimed to identify
the articles that we classify as core studies that have the potential to answer most of the
research questions. As already mentioned, keyframe selection is commonly addressed as a
step in the main task (e.g., visual odometry, visual SLAM, SfM, etc.), and consequently, it
could not be a direct evaluation of the proposed method. Additionally, QA2 “Does the study
answer our research questions?” was defined as a direct measurement of the relevance of the
study for this review.

Following the same idea, QA3, “Are the methods clearly defined?” aimed to assess the
rationales for the proposed method. Studies with a higher score on this question were
those in which the authors explained or justified the motivation for the proposed keyframe
selection method. This subset of study allows for an understanding of the role of keyframe
selection, the techniques that are being used most, and the properties that are used to
classify a frame as a keyframe within the context of those main tasks.

The classification of a frame as a keyframe can be a subjective process that depends on
the application context and its goals, which makes the evaluation of the proposed method
quite challenging. The remaining questions aimed to assess the studies regarding how they
are addressing this problem. QA4 “Do they use any process to validate the method?” aimed
to assess the means used to evaluate the proposed method. Studies that answered this
question positively were those that presented a process to directly evaluate the implemen-
tation of the proposed method for keyframe selection. Complementarily, QA5, “Do they
use a specific dataset to validate the proposed method?” allows for identification of whether the
evaluation process can be replicated given the metrics used.

QA6, “Does the study compare the proposed method against other methods?” aimed to iden-
tify whether the results were compared to others. The two last QAs are related to the tests
and the validations of the implemented method, showing their experimental measurements.
Nonetheless, it is important to define a standardized comparison process to identify the
most suited solution for each application. Finally, QA7, “Does the study discuss the results
obtained with the proposed method?” aimed to identify whether the authors qualitatively or
quantitatively explain the meaning of the presented measurements and results.

Table A1 contains the checklist used for the quality assessment of the included articles
and also the meaning of the three possible answers for each questions.

3.3. Risk of Bias

In contrast to traditional reviews, the systematic literature review (SLR) aims to
provide scientific rigor, as it is built upon a well-defined methodology. However, de-
spite following a predefined review protocol, there is still a risk of introducing bias into
our conclusions.

When selecting libraries for searching, we chose those considered the most popular
in the fields of computer science and robotics. It is highly likely that relevant articles
have been published in various sources. Nevertheless, the described protocol contains
all the necessary information to expand this review by incorporating new libraries and
aggregating the results.
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Although pilots’ research was conducted to define and refine the search string, ensur-
ing its accuracy remains a challenge. Similarly, while the criteria decisions were designed
to minimize subjectivity, applying them objectively proved difficult due to the lack of direct
attention given to the keyframe selection problem in most studies. To mitigate these biases,
the entire research protocol underwent validation, with consensus among the authors.

4. Results and Discussion

This section presents the results of the proposed methodology and a discussion of
the research questions presented in Section 3.1. The selection process in the course of the
conduction phase of this review resulted in 61 studies that attend the inclusion criteria.
To the best of our knowledge, combined with the results of the selection process, there is no
systematic literature review or conventional reviews related to this topic.

We categorized the included studies into four primary research areas: visual SLAM,
localization, visual odometry, and 3D reconstruction. Most of the principles of these areas
are derived from the structure from motion area; in that sense, we decided to not include it
in this categorization. The localization research area comprises studies that do not perform
the dead reckoning or mapping processes, such as appearance-based localization methods.

Analyzing the extracted data (Figure 3), we can see that 37 papers belong to the
visual SLAM research area, which represents 61% of the included articles. This can be
explained by the fact that keyframe selection is a crucial step in keyframe-based SLAM
approaches, since it decides when to introduce a new node into the topological map [20].
Combining this information with the temporal view of the included articles presented in
Figure 4, we can infer some patterns. As we can see, the included articles were published
between 2004 and 2021, and there was an increase in the number of studies on this topic
from 2010. In that year, the work of [27] was published, which received the best paper
award at the ICRA conference. In that study, the authors performed a series of experiments
and a rigorous analysis comparing filter-based and keyframe-based SLAM approaches,
where they pointed out that keyframe-based approaches give the most accuracy per unit of
computing time. Since then, keyframe-based SLAM approaches have received considerable
attention, notably after 2016, when ORB-SLAM2 [28] was published, which is considered
one of the state-of-the-art methods for stereo visual SLAM.

0

10

20

30

40

Visual SLAM Localization Visual 
Odometry

3D 
reconstruction

Figure 3. Number of included articles per research area.

The quality assessment helped to weigh the importance of individual studies to assist
the data analysis and synthesis of the included articles, regarding the objectives of this
SLR. The results are presented in Table 5 according to the assessment questions described
in Table A1. It was noticed that most of the answers were negative, which means that
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information provided by authors about the keyframe selection methods and their evaluation
were poorly reported or did not directly address the problem. This is explicitly observed by
QA2, which is “Does the study directly address the problem of keyframe selection”, with only 16%
of positive answers. Most of the included articles did not focus on the keyframe selection
method; it is addressed as an intermediary stage that is not directly evaluated.
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Figure 4. Number of included articles per year of publication.

QA5, “Do they use specific datasets for validation” received the lowest number of positive
answers, 7%; and the highest number of negative answers, 77%. This is because most of
the included papers evaluated their methods on commonly used datasets for other tasks,
such as visual odometry, visual SLAM, etc. This is also related to the fact that in most of the
studies, keyframe selection method is not the main focus. A minority of the studies used or
proposed datasets designed specifically for the evaluation of keyframe selection methods.

The question with the second-lowest number of positive answers, with only 10%,
was QA2, “Does the study answer our research questions?”, which was expected, since the
research questions were defined based on the goals of this review. Even though these
goals should be related to the article’s objectives, they are not expected to be precisely the
same. The only question positively answered was QA3, “Are the methods clearly defined?”,
with 72% of positive answers, a considerable number. This means that the majority of
the included articles presented and explained the motivation for the proposed method of
keyframe selection.

In the following sections, we will present and discuss the results of each research question.

Table 5. Study quality assessment results.

QA ID Yes (%) Partially (%) No (%)

QA1 10 (16%) 28 (46%) 23 (38%)
QA2 6 (10%) 26 (43%) 29 (48%)
QA3 44 (72%) 14 (23%) 3 (5%)
QA4 10 (16%) 25 (41%) 26 (43%)
QA5 4 (7%) 10 (16%) 47 (77%)
QA6 11 (18%) 17 (28%) 33 (54%)
QA7 20 (33%) 22 (36%) 19 (31%)
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4.1. RQ1: Which Techniques Are Being Used Most for Keyframe Detection in Visual Localization
and Mapping Tasks?

Keyframe detection is a known problem in the research areas of video analysis and
summarization, where it is used as a mechanism for generating a short summary of a
video [7]. A variety of methods have been proposed based on the measure of similarity
between images. However, not all of them are directly applicable to visual localization and
mapping problems, since some of these approaches require the examination of the entire
video sequence, which is not feasible in online applications.

The main objective of keyframe detection in visual localization and mapping tasks is to
achieve sufficient visual coverage of the robot’s environment while decreasing the amount
of redundant information. This means that the selected keyframe should be sufficiently
different from the previously detected one, but with enough overlap to guarantee the
tracking. Due to their success in video analysis applications, image similarity as a metric of
keyframe detection has become a standard approach for visual localization and mapping
tasks [20]. However, the notion of image similarity can be subjective and context-dependent;
thus, most of the approaches are heuristics-based. In this SLR, we propose the following
categorization: heuristics-based methods, probabilistic-based methods, and learning-based
methods. In Figure 5, we present a diagram illustrating the new categorization proposed in
this work. As shown in Table 6, 83.61% of the included articles are heuristic-based, 14.75%
are probabilistic-based methods, and only one article uses learning-based approaches to
detect keyframes. The following subsections present the included studies and the proposed
approaches for each category.

Keyframe selection 
strategies

Probabilistic-based Heuristic-based Learning-based

Uniform Sampling in 
Space

Uniform Sampling in 
Time

Uniform Sampling in 
Appearance

Data Association Photometric change

Figure 5. Keyframe selection strategies for visual localization and mapping tasks.

Table 6. Number of included articles per method.

Method Number (#) Percentage (%)

Heuristic-based 51 83.61
Probabilistic-based 9 14.75

Learning-based 1 1.64

4.1.1. Heuristic-Based Methods

Most of the studies argue that a keyframe should be sufficiently different from the
previously detected one in order to achieve an ample visual representation of the environ-
ment while reducing the amount of redundant information between frames. Therefore,
the methods are based on heuristics that usually rely on certain assumptions about the
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camera view change and the environment. As pointed out in [20], the commonly used
approaches can be divided into uniform sampling in space, uniform sampling in time,
and uniform sampling in appearance.

Uniform sampling in time approaches aim to select a keyframe at every nth frame
captured by the camera. These methods assume an acceptable correlation between the
time interval between frames and the appearance change of the environment. Usually,
they are not concerned with the selection itself, but reducing the number of frames to be
processed without increasing the system’s complexity. For instance, in [29,30], the proposed
methods focus on the data structure regardless of the subsampling mechanism. The authors
argue that the robustness of loop closure detection depends on the representation of the
candidate’s keyframes, and an efficient image query process is better than sophisticated
heuristics for data sampling.

Distance-based sampling approaches comprise the methods that select a keyframe at
every unit of linear or angular distance traveled by the camera. These methods assume a
good correlation between appearance change and spatial change, which is highly sensitive
to the unknown geometry of the scene [20]. The distance can be inferred directly from
the camera egomotion or from any external source, for example, an odometer. In [31], the
authors proposed to combine the robot’s linear and angular velocity with the camera frame
rate to define a time interval to extract keyframes, while in [32], the authors decided to use
the IMU preintegration data to infer the parallax between frames. Other methods, such as
that in [33], proposed to use the robot control feedback as a constraint for rough positioning
of the keyframes, and then an accurate positioning was obtained based on several criteria.
The commonly used approaches infer the distance traveled between frames based on the
estimated camera motion [34–44]. In these cases, the distance is computed as a Euclidean
distance between the estimated projection matrix, it can be either considering the camera’s
center or the rotation matrix and translation vector.

The appearance-based sampling approaches are expected to be more practical, con-
sidering that they directly measure the view change of camera observation with respect
to previously detected keyframes. This requires a means of assessing image similarity,
which can be subjective and context-dependent, since the images could not be exactly the
same. Therefore, most of the studies proposed engineering heuristics that seek a reasonable
tradeoff between precision, recall, and computation time. The most popular methods used
two main factors to infer the view change of camera observation: data association and
photometric change.

The methods based on data association are widely used due to the success of the
feature-based methods for visual SLAM and visual Odometry. It is worth mentioning that
these methods are considered appearance-based methods by the fact that the appearance
change between frames is associated with the change in data association. In general,
the data association is constructed by means of feature matching or feature tracking;
however, the criteria used for keyframe selection are distinctive. The majority used the
number of features matched/tracked or the inlier ratio between camera observation and
previous frames, or the existing map, for view change thresholding [45–51]. Other methods
used feature correspondence to construct auxiliary graph structures to determine the degree
of overlap between the camera observation and the previously detected keyframes [21,52,53].
Even though the feature correspondence is able to measure the degree of similarity or
overlap between frames, it is highly sensitive to the distribution of the detected features.
Therefore, others argue that feature flow-based metrics for similarity are more suitable to
detect the changes in the scene [54]. Likewise, other studies claim that only points with
enough flow magnitude provide information about both translation and rotation motions;
thus, the number of points with sufficient displacement can be used as a criterion for
keyframe selection, as proposed in [55].

On the other hand, methods based on photometric change are more popular in direct-
based methods for visual SLAM and visual odometry. These methods rely on the assump-
tion that the similarity between frames can be measured from the photometric change
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between the images. Moreover, by analyzing the pixel intensities, it is possible to determine
the degree of informativeness and the quality of the frames. This is important, considering
that changes in brightness due to camera exposure time, lighting conditions, and fast motion
blur can make tracking against the previous keyframe difficult [56,57]. The simplest—and a
fairly naive—approach is to use a pixelwise difference as means of measuring the similarity
between frames. However, this could not be effective for keyframe selection, due to image
noise and pixel correlation carelessness [20]. A more sophisticated approach is to use
the structural similarity (SSIM) metric, which relies on the assumption that pixels have
strong interdependencies, especially when they are spatially close, as proposed in [58].
Others characterize the images in terms of their histogram, and the similarity is inferred
according to some metric of the distance between the histograms. In this case, it could be
a global histogram that captures the global intensity, or a local histogram that computes
the histogram of subregions of the image [20,59]. The global histogram loses the spatial
information, within which the difference between two frames may exist, and this is partially
alleviated through the use of local histograms. One advantage of the photometric change
approach over the data association approach is that the similarity or the informativeness of
the frame can be inferred without the extraction of features, which is a time-consuming
process. In [57], the authors proposed to use the difference-of-Gaussian (DoG) filter as
a distinctiveness detector to represent the informativeness of each frame. Experimental
results show that the proposed keyframe measure is positively proportional to the number
of SIFT features.

All the methods above rely on the assumption that if the similarity between the camera
observation and the previous keyframe drops below some constant threshold, then the
frame can be declared as a new keyframe. This requires careful tuning of the threshold to
achieve an optimal result in different scenarios; thus, some studies have proposed methods
that define the threshold adaptively. In [32], the authors proposed a model to adjust the
threshold according to the situation. The proposed model comprises a weight factor of
the velocity, position, and rotation information from IMU preintegrated data, which are
compared to the threshold and updated in an iterative process. Alternatively, in [23], the
authors proposed to use the feedback of a designed PD controller to define to threshold
dynamically. The PD controller input error is computed as the difference between a defined
ideal view change and an estimated view change with regard to the build map.

Alternatively to the employment of individual heuristics, there are studies that propose
to combine different metrics for keyframe decisions. For instance, in [60], the authors
proposed to use a multidimensional weighted cost function to select the keyframe with
minimum value.

4.1.2. Probabilistic-Based Methods

Probabilistic-based methods are those that propose the design of the keyframe selection
mechanisms that are much less heuristic and more theoretical. In these cases, there are
no heuristic rules or assumptions about the scene; the decision is made based on the
informativeness of the frame regarding the geometry of the scene in a probabilistic fashion.

Besides the benefit of reducing the amount of data to be processed, the keyframe
selection can be applied to discard frames that could potentially lead to degenerated con-
figurations. There are several situations that could result in degenerate camera poses, such
as numerical errors in triangulation, bad correspondence, and the absence of translation in
the camera movement, which can lead to an ill-conditioned solution. On the other hand,
degenerate camera poses can introduce errors in the reconstruction process. Therefore,
probabilistic approaches seek to apply geometric and statistical analysis to infer the frame
quality for pose and structure estimation.

Correspondence goodness is the most straightforward approach for finding good
image pairs for pose estimation, since it is a commonly used source of data for geometric
model estimation. The quality of the correspondence can be obtained using information
criteria such as the geometric robust information criterion (GRIC) [61]. The GRIC is a
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function that scores a model based on the number of correspondences, the residuals, the er-
ror standard deviation, and the complexity of the model, i.e., the number of parameters
and dimensions. It returns the lowest score for the model that best fits the data; thus,
given a model and the correspondence between two scene views, the quality of the cor-
respondence can be inferred. In [62], the authors proposed to use keyframes to delimit
coherent subsequences for visual search tasks, and the selection procedure was built upon
the GRIC function. The fundamental matrix and planar homography models were used to
evaluate the opportunity to instantiate a new keyframe by checking the consistency of the
subject’s point-of-regard between the current observation and the last keyframe. Similarly,
in [8], the authors proposed the relGRIC metric that computes the relative comparison of
residual errors between the fundamental matrix and the homography matrix. They argued
that the fundamental matrix has a high number of errors when there is a small baseline,
and contrarily, the homography has a high number of errors with wider baselines; thus,
the relGRIC metric allows for the search for the sweet spot in baseline size based on the
camera and correspondence goodness.

Instead of inferring the camera pose goodness from the correspondences between
the views, some studies proposed the use of information-theoretic approaches to measure
the informativeness of the estimated pose. In general, camera motion estimation has a
probabilistic formulation that results in a nonlinear least-squares problem that can be
solved by maximum likelihood estimators such as Gauss–Newton. Given a nonlinear
and differentiable measurement process, the first-order approximation of the information
matrix can be obtained from the Jacobian matrix. The diagonal of the information matrix
represents the amount of certainty in the pose parameters, and can be used as a criterion
for keyframe selection [5].

Based on the epipolar constraint, in [63], the authors defined the error function as
the Euclidean distance between the matched points and their corresponding epipolar line.
The residuals were used to compute the Jacobian matrix, and consequently, the information
matrix was obtained. They proposed to compare the latest keyframe against two con-
secutive candidate frames by analyzing the eigenvalues of the information matrix. They
argue that the eigenvalues indicate the amount of certainty there is in the correspond-
ing eigenvector; thus, the frame with the highest least uncertain pose estimate can be
selected as a keyframe. Differently, the authors in [64] proposed to use the determinant
of the information matrix for selection thresholding. To be computationally feasible, the
covariance matrix is estimated from a pose graph optimization considering the landmarks
in the current observation and relative keyframes. The proposed thresholding process
reduces the number of user-defined parameters, and naturally, it adaptively selects the
keyframes based on the surrounding environment. Alternatively, some studies [13,22,65]
propose to transform the covariance matrix into a scalar based on the concept of differential
entropy for multivariate Gaussian distribution. The absolute value of the entropy abstracts
the uncertainty encoded in the covariance matrix into a scalar value. However, its value
varies along with the trajectory and between different scenes; thus, simple thresholding
for keyframe selection is not feasible. Therefore, in [13,65], the entropy ratio between the
pose estimated from the last keyframe to the current frame and the estimated pose from the
last keyframe and its first consecutive frame is used for thresholding. Meanwhile, in [22],
they proposed to apply an average filter on the measured entropy value, and current
observation is defined as a keyframe if its entropy value is below a certain percentage of
the tracked average.

Beyond the pose uncertainty, there are studies that seek to select keyframes based
on the expected improvement of the map. While other methods strive to maintain the
map integrity, this method aims to reduce the uncertainty on the map. In [66], the authors
proposed two approaches that attempt to reduce the map point entropy using information-
theoretic concepts. Cumulative point entropy reduction (CPER) seeks to select keyframes that
are expected to maximize the point entropy reduction in the existing map, while point
pixel flow discrepancy (PPFD) seeks to select keyframes that best initialize new features for
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the camera to track in the future. The CPER approach attempts to predict the map point
covariance if the observing keyframe was inserted into the bundle adjustment process; it
applies the Shannon entropy function to assess the uncertainty reduction across all map
points. On the other hand, the PPFD approach uses the point flow to construct two discrete
probability distribution functions: existing point flow PDF (E-PFP), which provides the
areas with a high probability of inserting new points; and future point flow PDF (F-PFP),
which predicts which of the candidate’s keyframes will add new image points in high-
probability areas of the E-PFP. They compute the relative entropy between the probability
distributions, and the candidate frame that F-PFP minimizes the relative entropy of is
selected as the keyframe.

In addition to the map uncertainty reduction, it is important to guarantee that the
ever-increasing size of the map does not become a bottleneck. In [67], the authors proposed
to apply information-theoretic metrics to remove redundant scene measurements in graph-
based maps with a minimum decrease in accuracy. The main idea is to calculate the mutual
information (MI) between a keyframe and its neighbors to quantify how much information
the reference keyframe adds to the estimated SLAM map.

4.1.3. Learning-Based Methods

Over the last few years, there has been an increasing interest in integrating machine
learning-based methods into the visual localization and mapping process to increase the ro-
bustness of specific modules in challenging environments [68], mostly improving the depth
estimation, feature extraction, and data association modules considering the environment
dynamics to better estimate the localization and mapping. Nevertheless, despite being a
hot topic in many applications, such as video classification, action recognition, and video
summarization [69], the result of this SLR shows that machine learning-based keyframe
detection is not an active research area in visual localization and mapping tasks.

Of the included articles, only one proposed a complete machine learning-based ap-
proach for keyframe selection. Other studies, such as [23,32], proposed learning models to
define the thresholds adaptively to the environment. However, the selection process is still
based on heuristics rules; thus, they have not been classified as learning-based methods.
Similarly, in [56], the authors have proposed a semantic content criterion to score the frames
based on their relevance for high-level tasks to be performed; yet, the final score is still
based on heuristics and assumptions about the scene.

The learning-based strategy proposed in [6] aims to overcome the limitations in state-
of-the-art learning-based visual odometry methods to capture large geometric changes,
since they are learned from short-length consecutive frames. According to the authors,
a keyframe should include considerably geometric and visual changes with regard to to
the last keyframe to augment the geometry description of the visual odometry process.
On the other hand, the visual odometry process can provide valuable geometry clues by
capturing challenging motion patterns and by checking the geometric consistency between
the target image and the keyframes. Hence, they proposed an unsupervised collaborative
learning framework to jointly learn the keyframe selection and visual odometry tasks in
an end-to-end fashion. The keyframe selector network consists of a similarity regression
function that fuses visual features and geometric features derived from the visual odometry
network, used by a loss function that intensively applies the triplet losses to measure
the similarity between frames. The output is a set of representative keyframes that are
managed and updated based on inserting and merging operations during the training
phase. The described process was not so clear, we tried to reach the authors by email but
without success.

4.2. RQ2: Which Kinds of Properties Are Used in Keyframe Classification?

This question aims to synthesize the most used properties to classify keyframes. It was
specifically motivated by the heuristics-based approaches that classify keyframes based
on some attributes that hold their assumptions about the camera view change and the
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environment. It is important to note that usually, a frame is not classified as a keyframe
by itself; these attributes are defined regarding their relationship with the previously
detected keyframes. Generally speaking, a frame could be assessed by its informativeness,
considering that changes in brightness, fast motion blur, and the lack of distinctiveness
information make pairwise image registration difficult. However, it is worthless to assess a
frame by its informativeness if it can not maintain a spatial and temporal relationship with
the previously detected keyframe.

Images are informative; they provide rich information about the environment, and
consequently, their processing is computationally expensive. On the other hand, adjacent
frames are usually captured at the exact location with a high degree of overlap; thus,
there is no need to process all of them. Therefore, regarding its appearance, a candidate
keyframe should be sufficiently different from the previously detected keyframe. In other
words, the selected keyframe should provide a considerable amount of new information
while ensuring that the covisibility with the last keyframe is maintained. In general,
most of the proposed approaches aim to infer the amount of view change of the camera
observation with respect to the existing keyframes, and the decision to select a keyframe is
made by thresholding the view change value. However, the notion of image similarity is
quite subjective and context-dependent; hence, most of the approaches seek to establish
a linear relationship between the change in the appearance of frames and the actual
agent’s view change, to provide a proper sampling of the environment. So, regarding the
appearance, what differs between the different techniques is not the intrinsic properties
of the keyframe, but the way in which the change in appearance is measured. Usually, it
is heuristically inferred by combining one or more factors such as camera motion, data
association, and photometric change that reflect the camera view change.

Keyframe assessment by the degree of view change is a worthy approach to reduce the
amount of redundant information processed; however, for visual localization and mapping
tasks, the quality of the results depends heavily on the quality and consistency of the data
to be processed. Therefore, besides their similarity, it is important to classify the keyframes
by their geometric relationships, which basically means identifying frames that lead to
ill-conditioned solutions. In that sense, adjacent frames tend to have a higher number of
matches, but there could be an insufficient amount of translation information in which the
epipolar geometry estimation can be ill-posed or undefined. Similarly, small baselines in
relation to the depth of the viewed scene can introduce numerical errors in triangulation
computation. On the other hand, a wider baseline can result in bad correspondences due to
occlusion, which can lead to degenerate camera pose estimation. Consequently, degenerate
camera poses seriously affect the quality of reconstruction. Thereby, for visual localization
and mapping tasks, it is essential to establish a good interkeyframe geometric relationship.

In summary, keyframes are commonly classified not only by their informativeness, but
also by their similarity and how they are temporally, spatially, and geometrically related to
the other keyframes. There are numerous strategies that allow this intrakeyframe assess-
ment to be carried out, and there is no consensus on which is the best strategy. In practice,
the criteria are defined in a convenient way, aiming at some aspects of the application, such
as the type of data used, i.e., a feature-based or direct approach; correspondence strategy,
i.e., feature-matching or feature-tracking, and so on. Likewise, these criteria can be defined
according to the application’s goals. For example, in visual odometry tasks, it is preferable
to a generous policy to guarantee the tracking with regard to the last keyframe, while for
visual SLAM tasks, the frame should be sufficiently different visually from the previous
keyframe in the map graph in order to decide whether a new node should be created. Simi-
larly, in 3D reconstruction applications, a keyframe could be inserted in order to maintain
the map integrity, while in visual SLAM, it is important to reduce the uncertainty in the
map to improve the accuracy of the localization. To conclude, the keyframe classification
problem is more related to the classic problem of choosing frame pairs with an optimal
baseline. Adjacent frames share a high amount of redundant information and tend to lead
to a poor motion estimate, i.e., the translation between them is ill-conditioned. On the other
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hand, as the baseline gets wider, image registration becomes harder and subject to bad
correspondence due to occlusion.

4.3. RQ3: What Is the Role of Keyframes in Visual Localization and Mapping Tasks?

This research question aims to identify and analyze the purposes of applying keyframe
selection and relate them to the different application domains. By analyzing the included
articles, we found distinct motivations for applying keyframe selection, but we identified
four primary goals that are commonly addressed: reducing the redundancy, improving the
tracking robustness, improving the map quality, and improving loop closure detection.

Figure 6 shows the number of included articles per target; they are not mutually
exclusive, which means that a study may have multiple targets. It could be noted that most
of the included articles seek to reduce the amount of data being processed and/or improve
the robustness of the tracking process. Methods that seek to reduce the redundancy select
the keyframe based on sufficient content change to avoid redundancy between adjacent
frames. Differently, methods that attempt to improve the tracking robustness are not
necessarily concerned with the amount of redundant information between the frames; they
aim to select the keyframes based on their geometric relation, to avoid frames that could
lead to an ill-conditioned solution.
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Figure 6. Number of included articles classified by keyframe selection target.

Regarding the map quality, we found that among the included articles, there are
two main targets: maintaining the map integrity or minimizing the uncertainty in the
map. Most of the methods define the target based on the map representation and/or the
application domain. Methods that attempt to maintain map integrity are more likely to
be applied in 3D reconstruction applications, where maps are commonly represented by
sparse geometric shapes such as points and straight lines. Basically, these methods seek to
reduce errors in multiview reconstructions by discarding frames that can lead to structure
degeneracy due to degenerate camera poses or numerical errors in the triangulation.
Differently, applications such as VSLAM are more concerned with the geometric relations
between places or landmarks; thus, they aim to select keyframes that will directly improve
the system’s ability to localize. Usually, especially in graph-based SLAM techniques,
the keyframes are selected in order to reduce the uncertainty and the problem size of the
bundle adjustment optimization.

Loop closure is one of the key components of every visual SLAM algorithm, as it
defines error constraints to be optimized in order to reduce the accumulated errors during
long-term and large-scale operations. That explains the fact that most of the included
articles that proposed keyframe selection to improve the loop closure were applied in
visual SLAM applications. The loop closure process is closely related to scene recognition,
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where given the current observation, one wants to query a database to retrieve the most
similar stored image. This would require a comparison between the current frame and
all past frames, which is computationally infeasible. Thus, some studies overcome this
problem by selecting only a subset of keyframes to be compared. Even though this sounds
to be a worthy solution, as can be observed in Figure 7, among the included articles related
to VSLAM applications, only 5 (13%) proposed keyframe selection methods to improve
loop closure detection. This can be explained by the fact that the loop closure is essentially
a large-scale image retrieval algorithm; consequently, most algorithms are more concerned
with designing hierarchical data structures that help speed up the matching process than
increasing the complexity by applying a keyframe selection mechanism.

Application domain
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Keyframe selection target by Application Domain

Figure 7. Number of article that address each target by application domain.

4.4. RQ4: How Can We Evaluate the Keyframe Selection Method?

As already mentioned in previous sections, the keyframe concept is quite subjective
and application-dependent, which makes the validation process challenging. Therefore,
in this research question, we show some of the methods and metrics used to validate the
proposed keyframe selection methods for visual localization and mapping tasks.

Figure 8 shows the most common validation methods found in this review. Note that
they are not mutually exclusive; one article could use more than one validation method.
This result shows the deficit in the literature with respect to the validation and testing
process. Note that 21% of the included articles did not use any method to validate the
proposed approach or did not even mention their impact on the results. This information
corroborates the motivation of this review, showing the lack of consideration regarding
the keyframe selection procedure despite being a stage of the pipelines with a high impact
on the final result, as we previously showed. Additionally, Figure 9 shows the most used
measurement metrics; generally, they are related to the validation method adopted.

For most of the included articles, 51.6%, the application-level comparison was used
as a validation method. This means that most of the studies did not directly evaluate the
proposed method for keyframe selection; instead, they evaluated the impact of the method
on the pipeline they were applied to. Usually, the proposed pipeline was compared against
others present in the literature based on application domain metrics such as trajectory
error, reprojection error, reconstruction quality, etc. Likewise, some studies adopted a
self-comparison approach, where the proposed pipeline was evaluated with and without
the proposed keyframe selection module.
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Figure 9. Number of selected articles per validation measurements.

Among the included articles, 9.7% compared the proposed method against other
keyframe selection strategies. When the comparison was not made against methods
presented in the literature, the uniform sampling in time strategy (i.e., selecting a keyframe
at every nth frame captured by the camera) was used as the baseline. The application
run time and the keyframe ratio (i.e., the total number of selected keyframes over the
total number of frames in the sequence) were the most common metrics used to directly
compare different strategies for keyframe selection. This is in compliance with the results
in Section 4.3, where we showed that most of the included articles sought to reduce the
amount of data to be processed.

The measurements-only validation method represents the studies that present a quan-
titative evaluation of the proposed method without comparing it with other methods,
usually using the keyframe ratio or the application runtime as metrics. On the other hand,
the qualitative evaluation mainly relies on the author’s opinion, expressing how good their
methods are without any metric information. Generally, this evaluation is made by visually
inspecting how similar the extracted keyframes are, or how the proposed method samples
the data in pure translation or rotation camera motions. In the case of reconstruction
application, it could be made by visually inspecting the quality of the reconstruction.
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To fairly compare different approaches, it is important to establish a dataset so they
can be evaluated based on their consistency with the ground truth. In Figure 8, it can be
observed that only 6.3% of the included articles used a ground truth in their validation
process. Additionally, in Table 7, it can be seen that most of the studies used a public
dataset to validate their pipelines; however, most of them are datasets and benchmarks
made specifically for application-level validation. Among these, we can highlight the KITTI
dataset [70], TUM datasets [71], and the Euroc dataset [72]. These results ratify that there is
a gap in the literature regarding the methodologies used to compare the performance of
different keyframe detectors. Nevertheless, we found a study [20] that could be considered
the first to propose a methodology to compare keyframe selection techniques in the field of
visual localization and mapping. Accordingly to the authors, a good keyframe detector
should sample the environment fairly, in such a way that it does not oversample the
environment and at the same time does not cause an unnecessary computational burden.
Therefore, the authors proposed an accurate similarity measure, which, according to them,
truthfully reflects the degree of change in the camera view, and in an ideal case, establishes
a linear relationship with the actual change in the camera view. It is important to point
out that this methodology is only viable in pure translation camera motions so that visible
objects do not get distorted by nonlinear transformations such as rotation and scale. In that
sense, the methods should be evaluated according to their ability to measure the similarity
between two consecutively acquired frames and compared against the proposed ground
truth similarity value. They also reported that the methods should be evaluated according
to their stability detection when the similarity thresholds are changed. They argue that the
threshold should work equally well independently of the environment.

Table 7. Number of included articles per dataset category.

Category Number (#) Percentage (%)

Public with real data 43 70.49
Public with synthetic data 4 6.56
Custom with real data 16 26.23
Custom with synthetic data 6 9.84

Later on, in their second study [54], the authors proposed two scenarios based on
synthetic data, for which ground truth similarity can be inferred. The first scenario consists
of the camera moving parallel to a rectangular wall with the optical axis perpendicular to
the surface. The ideal similarity measure is defined based on the width of the overlapping
region and the distance moved by the camera from its starting position, which decreases
as the robot moves in a straight line parallel to the wall. The second scenario consists of
the camera moving away from a large square wall, with the camera initial view being
one-eighth of the width and one-eighth of the height of the wall. In this scenario, they
proposed to calculate the ideal similarity as the fraction of the image where the original
view is visible. In both scenarios, they assume that the camera is an ideal projective camera,
and the synthesized features were assigned with unique IDs, so the methods did not get
affected by the matching strategy used to detect keyframes.

Other articles have proposed pseudo-ground truth to validate their methods. In [6],
the authors defined a set of snippets whose starting frame is a reference keyframe and a
pseudo-ground-truth keyframe is located in the middle of the snippet. They proposed to
use the ground-truth camera motion and interpolated depth maps to quantify the overlap
between the frames. The pseudo-ground-truth keyframe is detected if the ratio of the
overlapping area with regard to the reference keyframe is just below 50%. The keyframe
detectors are quantitatively evaluated by the ratio of the detected keyframes within a
fixed window around the defined pseudo-ground-truth keyframe. Similarly, in [62], the
authors proposed to manually annotate the starting keyframe of each subsequence to
produce pseudo-ground-truth data. Based on the application goals, they requested experts
to select coherent subsequences and annotate the starting keyframe for each one by using
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their human pattern recognition skills. The performance measure was defined as the ratio
between the number of keyframes recognized by the keyframe detectors over the number
of keyframes identified by the experts.

5. Conclusions

In this article, we present a systematic literature review aiming to synthesize the
existing knowledge about keyframe selection within the context of visual localization
and mapping. The SLR draws on 61 articles selected out of 498 from the most popular
digital libraries in computer science and robotics, filtered through a multistage process.
An important feature of the review is that it does not restrict itself to a specific application
domain or algorithm. This broad scope allows for a deeper understanding of the problem
modeling and its peculiarities regarding the application context. Despite being considered
an essential factor for the performance of the algorithms, the keyframe selection problem
has not received as much attention as other key techniques. Therefore, we believe that
this SLR is a step toward developing a deep understanding of this topic and bringing up a
discussion about its importance to encourage the development of new methods. Addition-
ally, by analyzing the commonly used approaches in the literature, a new categorization of
the methods has been proposed. In the following sections, we present the most relevant
findings and their implications for further research.

5.1. Lack of a Unified Classification of Keyframe Selection Methods

Through the examination of the included articles, we could observe a lack of standard-
ization in the classification of the methods present in the literature. Method categorization
or classification is an important means to provide an intuitive and comprehensive way to
present and summarize the existing approaches and a effective way to present the results
in a more structured manner. Few articles presented or mentioned the groups or types of
methods present in the literature and which of them their methods fit. Moreover, analyzing
the methods that have presented such categorization, we could not find a standard nomen-
clature. This motivated us to propose a new and updated classification of the existing
methods in the literature for keyframe selection within the context of visual localization
and mapping tasks.

Despite the increasing interest over the last few years, especially for depth estimation,
feature extraction, and data association, learning-based methods are still not a hot topic for
keyframe selection in visual localization and mapping tasks. Of the included articles, only
one proposed a complete machine learning-based approach; the proposed method fuses
visual and geometric features to train a deep neural network in a self-supervised manner.
Even though there was only a single study, we decided to include this category because
learning-based methods for keyframe selection have been intensively studied in other
applications, such as video classification, action recognition, and video summarization.
Moreover, considering the results presented in the mentioned article, we believe that this is
a promising method that should be explored in future research.

5.2. High Dependency of Heuristics-Based Solutions

The majority of the included articles proposed heuristics-based approaches to selected
keyframes. Although heuristic techniques could provide a solution in reasonable time and
complexity, close to a exact solution, they do not give an optimal or rational result, which
can lead to inaccurate judgments about how commonly things occur. In visual localization
and mapping tasks, a frame is not classified as a keyframe by itself; it should be performed
regarding its relationship with the previously detected keyframe. Most of the methods
rely on the assumption that if the similarity between the current frame and the previous
detected keyframe drops below some constant threshold, then the frame can be declared as
a new keyframe. In other words, they seek to establish a linear relationship between the
change in the appearance of the frames and the actual camera view change, which is not
always true. Furthermore, we could observe that what differs between these methods is the
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way in which the change in appearance is measured. In practice, the criteria are defined in
a convenient way according to the feature detector or the correspondence strategy adopted,
which makes it difficult to say which is the best strategy.

5.3. High Application Dependency

As already mentioned, this review was not restricted to a specific application domain
(i.e., visual odometry, visual SLAM, 3D reconstruction, localization) to obtain a broad
understanding of the problem modeling. In general, vision-based localization and mapping
algorithms have strictly related pipelines, with their basis in geometric modeling of the
world from visual information. Nonetheless, the results of this review show that most of the
keyframe selection strategies have been proposed for visual SLAM problems. This can be
explained by the fact that keyframe selection is a key component of keyframe-based SLAM
approaches because it defines when to introduce a new node into the topological map.
In that sense, usually, these methods seek to select the keyframes to achieve sufficient visual
coverage of the environment while keeping its representation simple for computational
efficiency. On the order hand, for applications such as visual odometry that require real-
time execution, it is preferable to have a generous policy or to not apply keyframe selection
to guarantee the tracking with respect to the last frame. In general, when applied, they
are more concerned with tracking robustness by discarding frames that could lead to
ill-conditioned solutions. Likewise, regarding the map data, 3D reconstruction applications
are more concerned with map integrity, while in SLAM applications, they are more likely
to select keyframes to minimize the uncertainty in the map representation. Therefore,
keyframe selection methods are commonly modeled regarding the application goals.

5.4. Lack of Validation Methodologies

The results of this SLR show a deficiency in the literature regarding the validation
and testing process. A considerable number of studies did not use any methodology
to validate their methods. Furthermore, the majority of the included articles did not
directly evaluate the proposed method; instead, they evaluated the impact of the method
in the pipeline they were applied to, based on the application domain metrics. There are
no public benchmarks available for validation; a few articles have proposed some kind
of methodology to compare keyframe selection techniques. The lack of rigorous tests,
validation procedures, and public benchmarks prevents a fair comparison of different
approaches. To assist and improve the development of new methods, better solutions for
testing and validation should be developed.

5.5. Further Research

The findings of this systematic literature review (SLR) represent a significant stride
towards the development of a comprehensive knowledge base concerning keyframe se-
lection in the domain of visual localization and mapping. However, despite this progress,
numerous unresolved questions persist, as a considerable number of studies do not directly
confront this issue. In light of these observations, we present the following comments as
potential research directions that we believe merit further exploration.

The most commonly employed approaches for keyframe selection were based on
heuristics. These methods often assume that a frame should be considered a keyframe if
its similarity to the previous keyframe falls below a fixed threshold. However, fine-tuning
is necessary to achieve optimal results with these approaches. Only a few studies have
proposed adaptive thresholding methods.

Probabilistic methods evaluate frames based on their informativeness with respect to
the scene’s geometry, disregarding frames that may potentially degrade pose estimation and
scene structure. We believe that these approaches hold the potential for greater effectiveness
compared to assessing frames solely based on appearance changes. However, further
exploration is needed in this area, as only a limited number of studies have addressed
these strategies.
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Assessing a frame based on more than just visual similarity involves establishing a
meaningful relationship between camera observations, scene geometry, and the dynamics
of the agent to which the camera is attached. This is a challenging task that requires cap-
turing intricate patterns, relationships, and dependencies within the data. Deep learning
approaches have shown remarkable effectiveness in tackling this type of task by automati-
cally learning these complex representations from data, rather than relying on handcrafted
features. Consequently, we find this area particularly intriguing, and believe it deserves
further exploration.
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Appendix A. Quality Assessment Checklist

Table A1. Quality assessment checklist and the meaning of each possible answer.

Question Yes Partially No

QA1. Does the study directly address
the problem of keyframe selection?

When the work explicitly
addresses the problem of
keyframe selection

When the work addresses the
keyframe selection problem for a
specific context. There is not a
direct evaluation of the the
proposed method

When the keyframe selection is
used to solve a specific problem in
a convenient way
without justification.

QA2. Does the study answer our
research questions?

When the work addresses all the
questions

When the work addresses most of
the questions

When the work only addresses
one or none of the questions

QA3. Are the methods clearly
defined?

The work presents and explains
the motivation for the proposed
method

The work presents the method but
there is not a clear justification

The work just presents the
method without justification

QA4. Do they use any process to
validate the method?

When the work directly evaluates
the impact of the proposed
method and its parameterization
in a specific task

When the work just evaluates the
final result of a specific task (e.g.,
reconstruction error, tracking
error, etc.)

When the proposed method is not
cited in the results

QA5. Do they use a specific dataset
to validate the proposed method?

When the work presents a specific
dataset to evaluate KF selection
methods

When the method uses commonly
used datasets but defines specific
metrics to evaluate the method

When the results are presented in
an unrepeatable way

QA6. Does the study compare the
proposed method against other
methods?

Directly compares different
approaches for keyframe selection

Just compares the same
system/framework with and
without the proposed KF selection
method

It only presents experimental
measurements without
any comparison

QA7. Does the study discuss the
results obtained with the proposed
method?

Qualitative and quantitative
discussion about the proposed
method

Qualitative discussion only There is not a discussion about
the proposed method
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Appendix B. Selected Studies
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Identification of new studies via databases and registers

Records identified from:
Databases (n = 4):

ACM Digital Library (n = 131)
IEEE Digital Library (n = 64)

Science@Direct (n = 93)
Springer Link (n = 210)

Registers (n = 0)

Records removed before screening:
Duplicate records (n = 2)

Records marked as ineligible by automation
tools (n = 0)

Records removed for other reasons (n = 0)

Records screened
(n = 496)

Records excluded
(n = 402)

Reports sought for retrieval
(n = 94)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 94)

Reports excluded:
Do not directly address the problem

of keyframe selection (n = 19)
Do not describe the methodology
used for keyframe selection (n = 8)

Not visual-based (n = 5)
Redundant report of the same

authorship (n = 1)

New studies included in review
(n = 61)

Reports of new included studies
(n = 61)

Figure A1. PRISMA flow diagram illustrating the process of applying inclusion and exclusion criteria
of the selected studies.

Table A2. A list of the selected studies grouped by the library that they were imported from.

Library Selected Studies

ACM Digital Library [30,36,38,45,47,60]

IEEE Digital Library [6,13,20,22,23,31–33,44,46,48–52,54,56,57,65–67,73–77]

ScienceDirect [21,35,40,41,43,53,58,62,78–80]

Springer Link [8,29,34,37,39,42,55,59,63,64,81–88]
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