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A B S T R A C T   

The echocardiogram is a test that is widely used in Heart Disease Diagnoses. However, its analysis is largely 
dependent on the physician's experience. In this regard, artificial intelligence has become an essential technology 
to assist physicians. This study is a Systematic Literature Review (SLR) of primary state-of-the-art studies that 
used Artificial Intelligence (AI) techniques to automate echocardiogram analyses. Searches on the leading sci
entific article indexing platforms using a search string returned approximately 1400 articles. After applying the 
inclusion and exclusion criteria, 118 articles were selected to compose the detailed SLR. This SLR presents a 
thorough investigation of AI applied to support medical decisions for the main types of echocardiogram 
(Transthoracic, Transesophageal, Doppler, Stress, and Fetal). The article's data extraction indicated that the 
primary research interest of the studies comprised four groups: 1) Improvement of image quality; 2) identifi
cation of the cardiac window vision plane; 3) quantification and analysis of cardiac functions, and; 4) detection 
and classification of cardiac diseases. The articles were categorized and grouped to show the main contributions 
of the literature to each type of ECHO. The results indicate that the Deep Learning (DL) methods presented the 
best results for the detection and segmentation of the heart walls, right and left atrium and ventricles, and 
classification of heart diseases using images/videos obtained by echocardiography. The models that used Con
volutional Neural Network (CNN) and its variations showed the best results for all groups. The evidence pro
duced by the results presented in the tabulation of the studies indicates that the DL contributed significantly to 
advances in echocardiogram automated analysis processes. Although several solutions were presented regarding 
the automated analysis of ECHO, this area of research still has great potential for further studies to improve the 
accuracy of results already known in the literature.   

1. Introduction 

Cardiovascular diseases have become the leading cause of death in 
industrialized countries [1]. In light of this scenario, researchers around 
the world are looking for ways to help save lives. Driven by this moti
vation, certain research groups have used historical data, images, and 
patient examination reports to develop models that use AI to predict 
possible implications for their clinical conditions. 

One of the most common techniques for diagnosing heart disease is 
the Cardiac Ultrasound or Echocardiogram - ECHO. Progress in the 
analysis of ultrasound images has always been fundamental to advance 

research in image-oriented diagnostics because ultrasound provides 
real-time image acquisition [2]. Ultrasound is used to assess overall 
cardiac structures and functioning, it is minimally invasive, and does not 
expose the patient to radiation. 

ECHO analysis is largely dependent on the physician's experience. 
However, AI can be used to identify, quantify, and interpret ECHO im
ages. ML models reduce the time needed to analyze images/videos, 
streamlining clinical decision-making, and providing interactive feed
back to train less-experienced physicians [3]. 

This work presents an SLR of primary studies of AI techniques 
applied in the automated analysis of Echocardiograms to support 
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computer-oriented medical decision-making. This SLR included over 
117 papers, most of them recent, covering a wide variety of applications 
of AI to ECHO analysis. 

Although similar works are found in the literature that investigated 
AI application in the automated analysis of echocardiographic images, 
only the articles found in [4,5] addressed the SLR methodology. The first 
covered three echo imaging modes, which were B-mode, M-mode, and 
Doppler. The second covered machine learning applied to support 
medical decisions in Transthoracic Echocardiograms. The other articles 
found used the Survey or Literature Review methodologies. This SLR 
presents a complete survey of the advances in AI for all types of echo
cardiogram (Transthoracic, Transesophageal, Doppler, Stress, and 
Fetal). 

The aim of this article was to carry out a secondary study on AI 
techniques used to support medical decisions and for the automation of 
ECHO analysis processes. The specific objectives were: to perform a 
search in the main scientific bases of studies on AI techniques applied to 
ECHO; to read the articles and create mini-abstracts of each; to group 
primary studies that had similar objectives; to categorize the mini- 
abstracts; to identify state-of-the-art whenever possible, and; to iden
tify the challenges/limitations of using AI in this context. 

The main contributions of this paper are:  

• This SLR presents a thorough investigation into advances in the 
application of AI for automated image/video analyses of echocar
diogram types (transthoracic, transesophageal, Doppler, stress, and 
fetal).  

• The articles were grouped and categorized by ECHO type, following 
the steps presented by [4,5]  
1. Improvement in image quality;  
2. Identification of the cardiac window vision plane;  
3. Quantification and analysis of cardiac functions;  
4. Detection and classification of cardiac diseases.  

• The AI techniques/methods used, and their respective metrics and 
precisions for each article presented.  

• The main datasets available in the literature for use in experimental 
analyses identified.  

• State-of-the-art for the Camus Dataset presented.  
• Challenges/limitations to the research problem identified. 

The remainder of this article is divided into the following sections: 
the SLR methodologies and protocols are presented in Section 2. The 
data extraction and mini-abstracts are grouped and presented in Section 
3. The research questions are discussed and answered in Section 4. 
Finally, our conclusion is presented in Section 5. 

2. Materials and methods 

A systematic literature review is particularly intended to provide an 
impartial, objective and systematic approach to answering a research 
question by finding all relevant research results from primary empirical 
studies. In this regard, a SLR is considered a secondary study [6]. 

This work presents a SLR of primary studies on AI techniques applied 
to the automated analysis of Echocardiograms to support computer- 
oriented medical decision-making. The review presents the results 
found for the following types of echocardiogram: Transesophageal, 
Fetal, Doppler, Stress, and Transthoracic. The SLR was conducted ac
cording to the guidelines described by Kitchenham et al. [7] and was 
divided into three stages: Planning, Selection, and Critical Analysis of 
the results. 

2.1. Planning 

The planning stage was conducted as follows: 1) An exploratory 
analysis of the literature was carried out to define the keywords and the 
sources to be researched; 2) A search was performed in the main 

scientific bases of the health area (Pubmed). Initially, the terms Echo
cardiogram OR Echocardiography were used to search the relevant articles 
to find a satisfactory search string; 3) Search filters were added with the 
inclusion of the terms “Machine learning OR Deep Learning” to refine the 
search; 4) The full text search string was as follows: ((Echocardiogram OR 
Echocardiography) AND (“Machine learning” OR “Deep Learning”)), Other 
keywords, such as “Artificial Intelligence”, were tested, however, they did 
not add value to the research; 5) Finally, the articles were extracted from 
the following scientific bases: ACM (Association for Computing Ma
chinery) [8]; IEEE (Institute of Electrical and Electronics Engineers) [9]; 
Science Direct [10]; PubMed [11]; and Web Of Science [12]. The search 
was restricted to articles published between January 2015 and October 
5, 2020, and written in English. 

The SLR aimed to answer the following research questions:  

Q1) In which types of echocardiogram was AI applied to support the 
medical decision?  

Q2) What type of echocardiogram was the most studied in research?  
Q3) What were the techniques and precision of the AI models 

applied?  
Q4) What were the challenges/limitations in applying AI to each type 

of echocardiogram?  
Q5) What techniques/methods were the most used?  
Q6) How can AI contribute to support medical decisions in analyzing 

echocardiogram images/videos? 

2.2. Selection 

In order to select the articles that comprised the SLR, the protocol 
followed the guidelines of Kitchenham et al. [13]. The article selection 
was based on the following inclusion (I) and exclusion (E) criteria:  

I1) Articles that used AI techniques for echocardiography analysis;  
I2) Articles that were complete and written in English.  
I3) Articles that presented primary studies;  
E1) Articles that did not have the type of echocardiogram exam. 
E2) Articles that did not specify the AI technique used, were incom

plete, or were abstracts.  
E3) Articles that did not present the experimental results. 

In Fig. 1 a summary is presented of the quantitative results returned 
from each scientific base using the search string mentioned in the SLR 
article selection step. The searches in the leading scientific bases 
returned a total of 1392 articles. After reading the titles and abstracts, 
1122 were discarded. Thus, 270 articles remained. Among these, 75 
were repeated. Therefore, 195 articles were selected for the complete 

Fig. 1. The SLR article selection step.  
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reading and data extraction phase. After completing the full reading of 
the articles, 77 met the exclusion criteria (E1, E2, and E3) and were not 
included. Finally, 118 articles were included in the SLR. 

In Section 3, the results and mini-abstracts of the articles are pre
sented, classified by type of ECHO, and separated by problem approach. 

3. Artificial intelligence applied in echocardiogram analysis 

In recent years, AI has brought about significant changes in the daily 
lives of consumers and professionals. In the health area, AI is used to 
support medical decision-making in the analysis of various types of test. 
A common task in a doctor's routine is to analyze test images to diagnose 
various types of disease. In this sense, the automation of routine tasks 
optimizes a professional's time. Several promising solutions have been 
presented that cater to diverse professional specialties. Among these are 
the analysis of X-rays, Computed Tomography, Magnetic Resonance, 
Ultrasound, and others. However, some areas have evolved more than 
others. The main explanation for this is the number of public datasets 
available to study the problem and present robust solutions. Research on 
the application of AI techniques for the analysis of echocardiographic 
images has increased in recent years. However, most research used 
proprietary and restricted datasets, hindering reproducibility and the 
testing of new approaches. 

Fig. 2 presents a summary of the sequence flows of the SLR devel
opment. The searches for articles were conducted in the leading scien
tific search platforms, they were then grouped by type of ECHO, 
separated into study approach categories, and lastly, a list of the main 
techniques was prepared. 

In the article data extraction phase, ML techniques were identified 
that automated various stages of the echocardiogram exam. According 
to Zhang et al. [14], advances in computer vision may allow the con
struction of a fully automated and scalable analysis pipeline for the 

interpretation of echocardiograms, including (1) visualization identifi
cation, (2) image segmentation, (3) quantification of structure and 
function, and (4) detection of diseases. The articles were categorized 
into groups and sub-groups, and were again grouped into four categories 
based on the pipeline, and the extraction of the data was directed to (1) 
improvement in image quality; (2) identification of the cardiac window 
vision plane; (3) quantification and analysis of cardiac functions; and (4) 
detection and classification of cardiac disease. Subgroups are shown 
when there was more than one different subcategory belonging to a 
group. The mini-abstracts were ordered by year and grouped by the 
technique used. The articles included in the SLR were categorized by 
type of echocardiogram and grouped according to the above categories 
to facilitate analysis and understanding. This way, the reader is provided 
with a quick view of each sub-problem. 

In the next subsections, we discuss the main advances, advantages, 
disadvantages, and challenges of the researchers. 

3.1. Related works 

Zamzmi et al. [4] carried out a systematic review to understand the 
existing methods for four main tasks: assessing the quality of the echo, 
viewing classification, limiting segmentation, and diagnosing heart 
disease. The review covered three ECHO image modes, which were B- 
mode, M-mode, and Doppler. They also discussed the challenges and 
limitations of current methods and outlined the most urgent directions 
for future research. 

Siqueira et al. [5] conducted a systematic review to investigate 
which artificial intelligence methods were being applied in the auto
mated analysis of transthoracic ECHO. The results directed the investi
gation towards three primary study groups: identification of the cardiac 
vision plan, analysis of cardiac functions, and detection of cardiac dis
eases. The review identified which ML techniques are being used to 
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automatically detect segmentation, and classify ECHO images. 
Al'Aref et al. [15] carried out a literature review of the application of 

ML in cardiovascular diseases. Their studies showed that clinical ECHO 
algorithm efforts were directed to 4 tasks, namely: 1) Classification of 
visualization; 2) Image Segmentation; 3) Natural processing language; 
and 4) Noises in the images. 

In the review by Liu et al. [16], first, they briefly introduced several 
popular deep learning architectures, and then fully summarized and 
discussed their applications for various specific tasks in ultrasound im
ages analysis, such as classification, detection, and segmentation. 
Finally, the open challenges and potential trends in the future applica
tion of DL in the analysis of medical ultrasound images were discussed. 

In the work by Olsen et al. [17] they presented a review article, 
provided an overview of ML directed to clinical analysis, and evaluated 
the current applications of ML in the diagnosis, classification, and pre
diction of heart failure. 

Alsharqi et al. [18] discussed the ML subfield of AI that is relevant for 
image interpretation. The topics discussed were the potential of ML to 
improve the performance of the diagnosis of ECHO, recent applications 
of these methods, and future guidelines for the assisted interpretation of 
ECHO by AI. 

Gandhi et al. [19] described the role and current use of AI automa
tion applied to echocardiography, and discussed the potential limita
tions and future challenges. 

Xu et al. [20] presented a review providing a contemporary overview 
of AI applications in cardiovascular imaging, including a critique of the 
strengths and potential limitations of DL approaches. 

Kusunose [21] presented a review to show that the use of radiomic 
information in echocardiography to train DL models has a strong po
tential to improve clinical workflows and diagnostic accuracy. 

3.2. Transesophageal echocardiogram 

In Transesophageal Echocardiography (TEE), the ultrasound trans
ducer is placed paired with the esophagus, which allows the evaluation 
of the heart and specific cardiac structures due to the proximity of these 
organs. 

3.2.1. Cardiac imaging planes 
Lili et al. [22] made an adaptation to the AdaBoost algorithm to 

detect the A4C cardiac vision plane and called it ImAdaBoost. Its accu
racy was 82.84%. 

3.2.2. Estimate LV basal deformation 
Haukom et al. [23] trained an unsupervised CNN-based model to 

calculate nonlinear deformation between subsequent images in a left 
ventricular (LV) TEE sequence, and estimated basal deformation to 
monitor the patient during cardiac surgery. The difference between the 
model's results with an expert's annotations was 7.25% (±4.56%), on 
average. 

3.2.3. 2D TEE aortic valve disease 
Thalappillil et al. [24] evaluated an automated echocardiography 

software package to measure the aortic valve ring, to compare it with the 
computer tomography results of patients with aortic stenosis. The au
thors showed that there was an acceptable correlation in their hypoth
esis. The aortic ring measurements acquired by the software were (r =
0.84), and the computed tomography measurements were (r = 0.85). 

3.2.4. 3D TEE aortic valve disease 
Queirós et al. [25] presented a new algorithm for a fully automatic 

aortic valve (AV) segmentation of 3D TEE dataset. The algorithm was 
proposed and validated to quantify relevant AV measures, and proved to 
be robustly and accurately capable of quantifying non-aesthetic and 
stenotic AVs with overall viability above 90%. 

3.2.5. 3D TEE mitral valve disease 
Calleja et al. [26] used 3D TEE to identify specific preoperative 

quantitative parameters of the Mitral Valve associated with the length of 
the implanted mitral annuloplasty band and the performance of leaflet 
resection in patients with Mitral Valve Degenerative Disease undergoing 
repair. 

Sotaquira et al. [27] presented a new algorithm for the segmentation 
and morphological quantification of the mitral annulus and mitral 
leaflets in the closed valve configuration from the RT3-D TEE volumes. 
After initialization, the mitral ring and mitral leaflets, as well as the 
coaptation line were obtained automatically. 

Kagiyama et al. [28] conducted a study to investigate the effective
ness and precision of the quantification of the Mitral Valve in TEE 3D 
using a commercially available automated software package developed 
for this specific task. As a result, they observed that the automatic 
software significantly reduced the evaluation time compared to the 
manual software. The time was reduced from (770 ± 89) to (315 ± 37) 
seconds. 

Jin et al. [29] proposed a new ML technique called Anatomical In
telligence in Ultrasound (AIUS) for 3D TEE. It semi-automatically 
tracked the anatomy of the ring and the Mitral leaflet for parametric 
analysis. The study's objectives were to examine whether AIUS was able 
to improve the accuracy and efficiency in locating Mitral Valve Prolapse 
among operators with different levels of experience. Manual segmen
tation by specialists did not have significantly lower sensitivity (60% vs 
90%, P < 0.001), specificity (91% vs 97%, P = 0.001), and precision 
(83% vs 95%, P < 0.001) compared to experts. 

Zhang et al. [30] proposed and developed a semi-automated 
framework that combined ML models with geometric and biomechan
ical image analysis models to build a specific representation of the pa
tient's mitral valve that incorporated material properties derived from 
the image. They used 3D TEE images of the open and closed mitral valve. 

Andreassen et al. [31] presented a fully automatic method for the 
segmentation of the mitral ring for 3D TEE that did not require manual 
entry. Each 3D recording was decomposed into a set of 2D planes, 
exploring the symmetry around the LV centerline. A 2D CNN was trained 
to predict the coordinates of the mitral annulus. The predictions of 
neighboring planes were then regularized, thus highlighting the conti
nuity around the annulus. The absolute error was (8.1 ± 6.0) mm for the 
perimeter, and (1.6 ± 1.4) cm2 for the area. 

3.2.6. 3D TEE tricuspid valve disease 
Fátima et al. [32] presented a preliminary experiment with new 

semi-automatic software package based on AI to analyze the 3D ETE 
tricuspid valve. The software offered a high correlation with surgical 
inspection due to its ability to analyze the valve's morphology and dy
namics throughout the cardiac cycle. Besides, it allowed greater repro
ducibility of data analysis and reduced inter-observer variability with 
minimal need for manual intervention. 

3.3. Fetal echocardiogram 

Fetal echocardiography is a widely-used medical examination for the 
early diagnosis of Congenital Heart Diseases (CHD) [33]. 

3.3.1. Cardiac imaging planes 
Xu et al. [33] proposed an end-to-end DW-Net model for the precise 

segmentation of seven crucial anatomical structures in the A4C view. 
The network comprised two components: 1) a Dilated Convolutional 
Chain (DCC) for “gridding issue” reduction, for the aggregation of 
contextual information at various scales, and the accurate localization of 
the cardiac chambers. 2) A W-Net to obtain more precise limits and 
produce refined segmentation results. The Area Under Curve (AUC) 
result was 0.990. 
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3.3.2. Cardiac function analysis 
Pu et al. [34] formulated acquiring the End-Systolic (ES) and End- 

Diastolic (ED) of the Fetus as a classification problem. They presented 
a hybrid DL structure that used the class rate to locate the ES structures 
and ED. According to the authors, this was the first structure that used a 
hybrid classification structure for the detection task. The proposed ar
chitecture integrated the region of interest (ROI) extraction component 
based on label detection, retaining a temporal dependency module and a 
classification module based on a CNN transferred by domain. The au
thors used YOLOv3 as a ROI (MD) module to extract regions of attention 
to improve classification performance and determine four-chamber 
visualization. However, time dependency was not lost by the Frame 
neighbor difference when merged with the image channels. Different 
CNN architectures were explored, namely, Xeception, ResNet, Incep
tionV3, MobileNet, and NasNetmobile, and different channel fusion 
strategies were used: SF, DF, and MDF. The ideal DL model consisted of 
trained MobileNet, MDF, and RD added a transition class strategy. On 
average, a 94.84% accuracy rate was obtained. 

Sundaresan et al. [35] developed a model using FCN to identify and 
segment the fetus heart. The AUC result was 0.850. 

Lee and Noble [36] proposed a new space-time-based neural network 
model to determine the fetal heart cardiac cycle using ultrasound 
automatically. The model obtained an MSE precision of 0.177 when 
compared with Ground-Truth. 

Sulas et al. [37] compared three different algorithms for the auto
matic detection of cardiac cycles in the fetus. Based on preliminary 
extraction of Pulsed-Wave Doppler (PWD) speed spectrum envelopes, 
the following results were obtained: model matching supervised classi
fication of a reduced set of relevant waveform characteristics and su
pervised classification over the entire waveform potentially 
representing a cardiac cycle. A personalized data set comprising 43 
traces of fetal cardiac PWD (174,319 signal segments) acquired in an 
A5C window was developed and used to evaluate the different algo
rithms. The SVM Algorithm was accurate to (98% ± 1%). 

Yang et al. [38] conducted a study to segment the four cardiac 
chambers and the descending aorta in fetal echocardiographic images. 
They chose the DeepLabV3+ architecture to classify a COMMON group, 
and six disease groups. The names of these six groups were hypoplastic 
left heart syndrome (HLHS), total anomalous pulmonary venous 
connection (TAPVC), pulmonary atresia with intact ventricular septum 
(PA/IVS), endocardial cushion defect (ECD), fetal cardiac rhabdo
myoma (FCR), and Ebstein's anomaly (EA). They assessed the A4C vision 
segmentation components and obtained the best segmentation with an 
average Sorensen–Dice coefficient (DICE) for Dataset1 of (0.897 ±
0.027), and of for Dataset2 (0.889 ± 0.025). 

3.4. Doppler echocardiogram 

According to Jahren et al. [39] Doppler spectrum recordings are 
often used to examine cardiac wall movements, flow patterns, and valve 
diseases. 

3.4.1. Quality improvements in ECHO Doppler 
Jahren et al. [39] presented a method based on Deep Learning to 

detect the diastolic end in a Doppler spectrum spectrogram. They 
explored the three modalities of Doppler spectrograms (continuous 
wave, pulsed wave, and tissue speed Doppler) to train a model that 
combined CNN to extract characteristics with RNN to extract temporal 
relations. The method obtained a detection accuracy rate of 97.7%. 

Jalali et al. [40] proposed a temporal interpolation method using 
Splines. Comparison of the results of state-of-the-art methods proved to 
be promising for the improvement of 2D and 3D ECHO frame sequences. 
Results demonstrated that the proposed method performed interpola
tion more precisely and had a 10× faster processing time compared to 
the most recent studies to increase frame rates. They also showed that 
interpolation accuracy depended greatly on the initial number of frames 

per second and on how many frames were to be added to the original 
sequence. This frame rate increase was also applied to the color Doppler 
in both 2D and 3D ECHOs. 

Zamzmi et al. [41] proposed a DL-based method to interpret ECHO 
DOPPLER images. The approach performed Doppler flow classification 
and quality assessment. They used labeled data to train models with the 
VGG-16 and ResNet-50 architectures. It achieved general accuracy of 
91.6% and 88.9%, respectively, for flow classification and quality 
assessment. 

Oktamuliani et al. [42] proposed a correction and smoothing method 
to determine the correct Nyquist limit, and to restore the average speed 
to the correct value on a color Doppler ultrasound. 

Zhuang et al. [43] used the YOLO model to analyze cardiac fluid flow 
vector (MVF) mapping based on ultrasound color Doppler data. The DL 
YOLO model was combined with an improved block-matching algorithm 
for locating and tracking the myocardial wall. Thus, the azimuth speed 
of the myocardial wall-stains could be obtained. Moreover, they pro
posed using a non-linear weight function to fuse the radial velocity of 
blood particles and the speed of the azimuth of stains on the myocardial 
wall in a non-linear way. Thus, the vortex flow diagram cardiac flow 
area could be obtained. The best result was a metric AP30 of 90.36%. 

3.4.2. Detection and classification of cardiac disease with ECHO DOPPLER 
Narula et al. [44] used an ML structure that incorporated echocar

diographic data to track spots and to automatically identify hypertro
phic cardiomyopathy (HCM) of the physiological hypertrophy observed 
in athletes (ATH). 

Tabassian et al. [45] analyzed the entire temporal profile of the LV 
segmental deformation curves and described their interrelationships to 
obtain more detailed information on the overall function of the LV in 
order to identify abnormal changes in the LV mechanics to detect 
myocardial infarction. They used PCA, and accuracy was 87.0%. 

Heo et al. [46] compared the conventional PISA method with the 
clinical implications of 3D-FVCD transthoracic ECHO in real-time with 
color Doppler to quantify the volume and to detect mitral regurgitation. 
They identified that 3D-FVCD was superior to the conventional 2D 
techniques. Correlation was (r = 0.94) for 3D-FVCD and (r = 0.87) for 
2D-PISA. 

Chen et al. [47] used the Naive Bayes classifier to identify risk in 
patients with severe dilated cardiomyopathy (CDG) disease. The model 
may be used to guide risk stratification and patient management in the 
future. The result was a AUC of 0.877. 

Kwon et al. [48] created a predictive model to identify the risk of 
death in patients who had a combination of coronary heart disease or 
heart failure for two groups of patients: Group1- Coronary Heart Dis
ease, and Group2 - Heart Failure. They tested 10 ML models, where 
accuracy using DL was greater. The results were AUC of 0.958 for 
Group1, and AUC of 0.913 for Group2. 

Vennemann et al. [49] carried out an in-vitro experiment to predict 
aortic valve degradation. They described how unsupervised novelty 
detection algorithms could be used to automate the interpretation of 
blood flow data to improve results through the early detection of adverse 
cardiovascular events without the need for repeated tests in a clinical 
setting. The proposal was tested in an in-vitro flow loop that simulated a 
failed aortic valve in a laboratory environment. Increasingly severe 
aortic regurgitation was deliberately introduced with tube-shaped in
serts, preventing the valve's complete closure during diastole. Blood 
flow records from a flow meter at the ascending aorta site were analyzed 
using the algorithms introduced in their study. A diagnostic index was 
defined that reflected the severity of valve degradation. Average results 
of the training rate with fraction (Max and Min) support vector hyper
parameters set at v = 0.01, 0.05 and 0.15 were, respectively, 0.995, 
0.946 and 0.849. 
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3.5. Stress echocardiogram 

Stress echocardiography is a well-established diagnostic tool for 
suspected coronary artery disease (CAD) [50]. 

3.5.1. Cardiac function analysis with ECHO stress 
Bennasar et al. [50] used ML to predict significant CAD defined by 

positive stress echocardiography results in patients with chest pain, 
using anthropometry, cardiovascular risk factors, and medications as 
variables. Due to its conception, this could allow the clinical prioriti
zation of patients with probable CAD prediction, saving doctors' time 
and improving the results. The best accuracy was 67.73% with the SVM 
algorithm. 

Čelutkiene et al. [51] concluded that the combination of unique 
quantitative parameters in the multiparametric model for the detection 
of ischemia was not superior to the visual assessment during the 
dobutamine stress echocardiogram. The model had sensitivity and 
specificity of 91.6% and 86.3%, respectively, when compared to the 
visual access of 76.8% and 89.0%. 

Omar et al. [52] proposed a fully automated image analysis frame
work for classifying abnormalities in movement of cardiac walls using 
2D + T images. They carried out the traditional Classification with 
Random Forest and handmade Segmentation, and the hierarchical ag
gregation of Spatio-temporal information with a CNN-based approach. 
Accuracy was 75.4%. 

Omar et al. [53] hypothesized that unsupervised cluster modeling 
using clinical and stress characteristics could detect heterogeneity in 
cardiovascular risk and the need for subsequent cardiac testing among 
the patients. The combined model showed better predictive capacity 
compared to clinical or stress models alone. The result was a AUC of 
0.716. 

Nogueira et al. [54] proposed a framework for analyzing datasets 
with complex data and used a dataset of handgrip exercises, including 
complete acquisitions of 10 healthy controls and five patients with ANT1 
mutation (1377 cardiac cycles). The framework was based on an unsu
pervised formulation of multiple learning kernels used to integrate in
formation from myocardial velocity and heart rate plots to obtain a 
lower-dimensional representation of the data. 

The result of stress echocardiography and patient variables, 
including risk factors, current medication, and anthropometric vari
ables, has not been extensively investigated [50]. 

3.6. Transthoracic echocardiogram 

Transthoracic Echocardiogram (ETT) is the most widely used type 
because it is simple and less invasive and delivers good results. The 
transducer is used externally in the chest region at the cardiac window 
points of view to capture waves and check the complete functioning 
cycle of the heart. 

3.6.1. Cardiac imaging planes 
According to American Society of Echocardiography (ASE) guide

lines [64], the acquisition of echocardiographic images is standardized. 
All transducers are marked to indicate the orientation of the cardiac 
vision windows. These are: Parasternal, Apical, Subcostal and 
Suprasternal. 

Balaji et al. [55] proposed a fully automatic classification of cardiac 
window vision of echocardiograms. The system was built based on an 
ML approach with two types of feature: 1) Histogram features and 2) 
Statistical features. The accuracy was 87.5%. 

The representations proposed by Penati et al. [56] depend on Bag-of- 
visual-words (BoVW), which has been used successfully by the computer 
vision community in visual recognition problems. An essential element 
of the proposed representations was sampling images with large regions, 
which drastically reduced the execution time of the image character
ization procedure. The experimental evaluation of the proposed 

approach compared different image descriptors to classify four cardiac 
vision plans. The representations were robust for different image 
transformations, namely, downsampling, noise filtering, and different 
ML classifiers, maintaining the classification accuracy rate above 90.0%. 

Eisman et al. [57] created an automated method based on rules for 
processing “indications” listed in Transthoracic echocardiogram reports 
and classified them into one of the main categories of the Echocardi
ography Appropriate Use Criteria (EAUC). It was developed and vali
dated based on a reference standard established from experience by the 
physician. The method used was Term Frequency – Inverse Document 
Frequency (TF-IDF), widely used in Natural Language Processing (NLP) 
and Random Forest. Cohen's Kappa accuracy was (0.89 ± 0.06). 

Zhu et al. [58] developed a framework with ML techniques using 
cardiac ultrasound guidelines to extract the standard plan and determine 
the appropriate usage steps for clinical 3D echocardiography exams. 
First, they used the Hough Forest (HF) technique for hierarchical 
research and to detect 3D resource points. Second, the initial plans were 
determined using anatomical regularities following the guideline. 
Finally, it used the Regression Forest technique to integrate the plan 
regularity constraints to apply to each plan. The proposed approach 
obtained the following orientation for the angle: (7.6 ± 4.3), for Dis
tance: (2.5 ± 2.2), for precision: 80.4% and time of 0.8 s. 

Khamis et al. [59] presented a classification algorithm that employed 
several stages in the space-time extraction approaches, with Cuboid 
Detector and supervised dictionary learning (LC-KSVD) to exclusively 
improve the automatic recognition and accuracy of Cardiac Vision 
Classification in echocardiograms. The recognition accuracy rates ob
tained were, respectively: 97.0%, 91.0%, and 97.0% for A2C, A4C, and 
ALA, with an average recognition rate of 95%. 

Gao et al. [60] incorporated spatial and temporal information sup
ported by video images of the cardiac movement, giving rise to two 
strands of the 2D CNN system. They conducted the fusion of both net
works through linear integration of the class score vectors obtained from 
each of the two networks. The results of this architecture maintained the 
best classification results for eight categories of echocardiogram video 
views with an accuracy rate of 92.1%. At the same time, it achieved 
89.5% using only a single space CNN network. 

Madani et al. [61] used CNN to create a classification model to 
identify the type of vision of the echocardiogram exam. In their exper
iment, 15 types of cardiac vision windows1 were labeled. The model's 
accuracy was 97.3% for 12 of these, and 91.7% for all 15. A echocar
diography specialist assessed the same inputs, and the accuracy was 
70.2–84.0% of correct answers. Madani et al. [62] used General 
Adversarial Network (GAN) and CNN for the same visions, and with 
Ensemble they managed to increase accuracy to 94.4%. 

Ostvik et al. [63] used CNNs to create classification models to predict 
up to seven different cardiac window views. Among the experimental 
models, they proposed the CVC network. The model obtained 98.3% 
accuracy. 

Zhang et al. [14] used CNN to automatically determine 23 types of 
cardiac view windows2 of echocardiographic images. They obtained 
84.0% accuracy. 

3.6.2. Left ventricular volume and ejection fraction 
For Asch et al. [92] the quantification of the left ventricular ejection 

fraction (LVEF) was performed with the manual or automatic identifi
cation of the endocardial limits. To calculate the final systolic and 

1 PSLA, SAX-MID, SAX-BASAL, A4C, A5C, A2C, A3C, SUB4C, SCVC, SUBAO, 
SUPAO, PW, CW, MMODE, RV-INFLOW.  

2 PLA.remote, PLA.zoom of LA, PLA, PLA.centered on LA, RV-INFLOW, PSA- 
APEX, PSAP, PSAM, PSA-AoV, PSAX-AoV zoom, A2C.no occlusions, A2C.oclu
ded LA, A2C.ocluded LV, A3C.no occlusions, A3C.ocluded LA, A3C.ocluded LV, 
A4c.no occlusions, A4C.ocluded LA, A4C.ocluded LV, A5C, Subcostal, Supra
sternal, other. 
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diastolic volumes, a mathematical model was used. For Jafari et al. [70] 
LVEF was one of the primary measures used to assess heart functionality, 
and ECHO was the standard imaging modality used to measure LVEF. 

Dong et al. [65] proposed a novel fully automatic method, combining 
the DL model and a deformable model. To target the LV endocardium, 
they trained CNN to generate a binary cuboid to locate the Region of 
Interest (ROI). Using ROI as an input, they trained a stacked Autoen
coder model to infer the initial shape of the LV. Finally, they used the 
Snake model to infer the initial way of segmenting the LV endocardium. 
The correlation was R2 = 0.8184. 

Dong et al. [66] proposed a method combining Multi-scale Con
volutional Deep Learning and Random Forest for the segmentation of 
the LV in 3D. The first method extracted the unlabeled data character
istics, and the second was used for training to perform the regression 
with the labeled data. The results R2 for EDV, ESV and EF were 0.850, 
0.871 and 0.863, respectively. 

Leclerc et al. [67] conducted an experiment comparing the results of 
the CNN U-net model with Structured Random Forest (SRF) to segment 
the epicardium and endocardium in order to estimate the Ejection 
Fraction (EF) and Global Longitudinal Deformation (GLD) in the A2C 
and A4C views. Using the Sorensen-Dice index metric, the CNN U-net 
results were (0.896 ± 0.047) Endocardium (VE-endo) and (0.931 ±
0.028) Epicardium (VE-epi). Data from 400 patients were used. 

Zyuzin et al. [68] used the CNN U-net model to segment the heart LV 
using echocardiogram images. The accuracy was 92.3%. 

Raynald et al. [69] compared two complementary approaches to 
segmentation and automated the classification of LV position in 2D 
echocardiographic sequences. The first approach was based on extract
ing Handcraft features for contrast and position. The second followed 
the DL structure. Experiments have shown that the two approaches 
produce approximately identical performances in the visualization 
classification task (about 95% recognition rate). 

Jafari et al. [70] presented a mobile app to estimate LVEF. It runs in 
real-time on Android mobile devices with a wired or wireless connection 
to a Point-of-Care Ultrasound (POCUS) cardiac device. The A2C and A4C 
visions were used by the pipeline to estimate the biplane EF. For this, 
they used a multitasking and computationally efficient Deep Fully 
Convolutional Network (DFCN) for simultaneous LV segmentation and 
detection of landmarks in these views. They integrated into the LVEF 
estimation pipeline. Accuracy was 92.0%. 

The article by Veni et al. [71] presented a new framework that 
combined DL approach benefits with those of classic segmentation 
methods. The Fully Convolutional Network (FCN) architecture produced 
LV masks in a sequence of slightly different images with the same region 
and visualization. The result obtained using the DICE metrics was 0.90. 

Dong et al. [72] proposed a new automatic method for LV Segmen
tation, based on FCN and the deformable model. With the method, they 
implemented the coarse-to-fine framework. First, they performed the 
fusion of a new deep network based on the transfer of learning and 
fusion of resources, combined with the residual modules to obtain a 
coarse segmentation of the LV on 3D echocardiography. Second, they 
proposed a geometric model initialization method for a deformable 
model based on the coarse segmentation results. Third, they imple
mented the deformable model to further optimize the segmentation 
results with a regularization item, avoiding leakage between the left 
atrium and the LV, achieving the refined LV segmentation target. Results 
were EDV (r = 0.982), ESV (r = 0.979) and FE (r = 0.792). 

Ge et al. [73] proposed a model called a Paired-View LV Network 
(PV-LVNet). Its purpose is to automatically and directly estimate the 
indices of various types of VE from paired A2C + A4C echocardiographic 
views. Based on a newly designed Circle Network, PV-LVNet robustly 
located the VE and automatically cut the VE ROI from a A4C and A2C 
sequence. The location and image resampling module accurately and 
consistently estimated seven different indexes of multiple dimensions 
(1D, 2D, and 3D) and views (A2C, A4C, and A2C + A4C union). The 
accuracy using the MAE metric reached 2.85 mm, and the internal 

consistency for the estimation of cardiac indexes with the Cronbach α 
reached 0.974. 

Zyuzin et al. [74] used several ML methods to identify the LV area 
edges in ECHO images. They treated the problem as a particular case of 
binary pixel classification. Of the methods, the Bag-10 complex model 
demonstrated the best classification result of 98.4%. 

Bobkova et al. [76], carried out an initial work that was expanded by 
Bobkova et al. [75], where the authors defined the LV segmentation task 
and reduced it to the problem of classifying pixels in video frames. A 
pixel can belong to one of two classes (the background region or the LV 
region). They applied several classic ML algorithms. The best results 
were obtained from the Random Forest (RFC) and Decision Tree (RFC) 
Classifiers, both with AUC of 0.930. 

Belous et al. [77] proposed the Contextual shape model (CSM) 
approach to automatically segment the VE, based on the Dirichlet pro
cess mixture model (DPMM) with the Chinese restaurant process (CRP). 
The approach classifies the LV function as Normal, Abnormal, and Mixed 
(Normal + Abnormal). Among the methods used, the CSM obtained an 
accuracy of 91.7%. 

Ouzir et al. [1] proposed a Sparse Representation - Dictionary 
Learning (SR-DL) method that combined a specific similarity measure 
with spatial smoothness sparse regularizations, jointly exploring the 
statistical nature of the images obtained with the B-mode, and the 
smoothness and sparse properties of cardiac motion. The results were a 
CD2 of (0.147 ± 0.088), a MI of (0.157 ± 0.091), and a SSD of (0.173 ±
0.105). 

Bernier et al. [78] proposed a method for the 3D segmentation of the 
LV comprised of 4 stages. First, a 3D sampling of the LV cavity was made 
based on a Bezier coordinate system to change the input 3D image to a 
Bezier space. A plane corresponds an anatomically plausible 3D 
Euclidean bullet shape. Second, they constructed a 3D graph and 
assigned an energy term (based on the image gradient and a 3D prob
ability map) to each end of the graph, some of which received infinite 
energy to ensure that the resulting 3D structure passed through the main 
anatomical points. Third, a minimal maximum flow cut procedure was 
performed on the energy graph to outline the endocardial surface. 
Fourth, the resulting surface was projected back onto the Euclidean 
space, where a convex locking algorithm for post-processing was applied 
to each short-axis slice to remove local concavities. In general, it ob
tained better results than state-of-the-art methods for the SETUS echo
cardiographic dataset. 

Narang et al. [79] demonstrated a new algorithm called Philips 
HeartModel to perform the volumetric analysis and segmentation of the 
atrium and LV functions. Comparing the correlation between Heart
Model vs. CMR for atrium and VE, respectively the results were (MaxV: 
0.95, MinV: 0.90 and FF: 0.72) and (EDV: 0.97, ESV: 0.86 and EF: 0.79). 
In HeartModel vs. TomTec for atrium and VE, respectively the results 
were (MaxV: 0.90, MinV: 0.88 and FF: 0.87) and (EDV: 0.95, ESV: 0.97 
and EF: 0.91). The time to generate the volume curve was reduced from 
(3.6 ± 0.9) minutes to (35 ± 17) seconds. 

Volpato et al. [80] proposed an ML approach for 3D echocardiog
raphy that allowed automated determination of LV mass. The objective 
was to assess the approach accuracy, comparing it with the cardiac 
magnetic resonance (CMR) reference and conventional 3DE volumetric 
analysis. The results used the MAE metric of (126 ± 39) g. 

Kusunose et al. [81] tested two types of input method for image 
classification and tested the accuracy of the prediction model for EF on a 
learning database containing erroneous images that the observers did 
not verify. The best CNN model rated video displayed a 98.1% overall 
test accuracy in the independent cohort. In the visualization classifica
tion model, 1.9% of the images were incorrectly labeled. 

Moradi et al. [82] proposed a new architecture to insert all semantic 
prominence in the LV segmentation process in the U-Net model. The 
feature maps on all U-net decoder path levels were concatenated, and 
their depths were equalized and increased to a fixed dimension. This 
stack of resource maps was the input of the semantic segmentation layer. 
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The proposed model performance was evaluated using two sets of 
echocardiographic images: a public data set and a prepared data set. The 
proposed network produced significantly better results when compared 
to U-net, dilated U-net, Unet++, ACNN, SHG, and Deeplabv3 with a 
DICE of 0.953. 

To perform segmentation of cardiac anatomy, Li et al. [83] devel
oped a recurrent multi-view aggregation network (MV-RAN) to perform 
segmentation of echocardiographic sequences with the complete anal
ysis of the cardiac cycle. The experiments used multi-centric and multi- 
scanner clinical data consisting of spatiotemporal data sets (2D + t). 
According to the authors, when compared to other state-of-the-art DL 
methods, the MV-RAN method achieved significantly superior results 
with a DICE of (0.92 ± 0.04). 

Ta et al. [84] identified that motion tracking often depends on ac
curate myocardial segmentation, which can be challenging to obtain due 
to inherent ultrasound properties. To overcome this limitation, they 
proposed a semi-supervised collaborative learning network exploring 
overlapping features in motion tracking and segmentation. The network 
trained two branches simultaneously: one for motion tracking and the 
other for segmentation. Each branch learned to extract resources rele
vant to their respective tasks and shared them with the other. The 
learned movement estimates propagate manually over a segmented 
mask over time, which guides future segmentation forecasts. The result 
was a DICE of (0.87 ± 0.01). 

Arafati et al. [85] presented a new generalizable and efficient fully 
automatic multi-label segmentation method for ECHO four-chamber 
views using FCNs and GANs. They claimed to be the pioneers in using 
GANs for pixel classification training, although they have not yet been 
used in cardiac imaging. Results: 92.1%, 86.3%, 89.6% and 91.4% for 
VE, DV, AE and AD, respectively. 

Ahn et al. [86] designed a U-Net-inspired CNN that uses hand-drawn 
segmentation as a guide to learn the estimates of displacement between 
an original image and the unlabeled ground-truth displacement, mini
mizing the difference between a transformed source frame and an 
original destination frame. Then, they penalized the divergence in the 
displacement area in order to impose incompressibility within the LV. 
Finally, they demonstrated the model performance in synthetic and in 
vivo canine 2-D echocardiography data sets, comparing them with a 
non-rigid registration algorithm and a shape tracking algorithm. RMSE 
was Ux of (0.77 ± 0.29) and Uy of (0.80 ± 0.31) for the proposed SR 
Model. 

Li et al. [87] proposed the Dense Pyramid and Deep Supervision 
Network (DPSN) model to interpret multi-vision and multicenter echo
cardiographic sequences. The DPSN model incorporates the advantages 
of a densely connected network, and the resource pyramid network and 
deeply supervised network help extract and merge holistic semantic 
information at various levels and scales. This capability gives the DPSN 
model prominent generalization and robustness, allowing it to produce 
an accurate interpretation. To reduce computational complexity and 
avoid frequent loss of information in temporal modeling, the DPSN 
model processes all frames independently (that is, without using tem
poral information) but can still achieve stable and consistent perfor
mance in the sequence. The results was a DICE ED of (0.945 ± 0.025) 
and ES of (0.925 ± 0.049) for frame segmentation, and a DICE of (0.921 
± 0.046) for sequence segmentation. 

Sustersic et al. [88] used the CNN U-Net model to segment LV ECHO 
images. Accuracy was 83.5%. 

Hu et al. [89] presented a Deep Learning method based on the 
Bilateral Segmentation Network (BiSeNet) for the automatic segmenta
tion of pediatric A4C echocardiographic images. BiSeNet consists of two 
paths, a space path to capture low-level spatial resources and a context 
path to explore high-level semantic context resources. It presents a 
module to concatenate the learning paths. The results showed a DICE of 
0.932 and 0.908, respectively, for LV and Atrium segmentation. 

Dong et al. [90] proposed a new efficient method for 3D segmenta
tion of the LV on echocardiography, which is essential for diagnosing 

heart disease. According to the author, the proposed method effectively 
overcame the challenges of 3D echocardiography: high dimensional 
data, complex anatomical environments, and limited annotation data. 
First, and for the first time, they proposed a deep atlas network, which 
integrated the LV atlas into the DL framework to address the LV 3D 
segmentation problem in echocardiography, and improved performance 
based on limited annotation data. Second, they proposed a new 
constraint of information consistency to improve the model's perfor
mance at different levels simultaneously and, finally, achieved effective 
optimization for 3D LV segmentation in complex anatomical environ
ments. Results were a DICE of 0.97 and inference time of 0.02 s. 

Smistad et al. [91] presented a proposal to real-time automatic EF 
and Foreshortening Detection. The method uses several deep learning 
components, such as view classification, cardiac cycle timing, segmen
tation and landmark extraction, to measure the amount of fore
shortening, LV volume, and EF. Validation was performed with ECHO 
3D to measure the effect of the foreshortening. Difference in variability 
for the inter-observer obtained a MAD result of 7.2%. 

3.6.3. Left ventricular ejection volume and fraction using a Camus Dataset 
Leclerc et al. [93], investigated a ML solution based on the Struc

tured Random Forest algorithm to fully automate myocardial and LV 
segmentation in heterogeneous clinical data. With the competitive re
sults achieved, the authors believe that supervised learning may be the 
key to automatic segmentation of the heart. The results for segmentation 
of VE were (EDV of (0.92 ± 0.03) and ESV (0.93 ± 0.04)) and 
Myocardium (EDV of (0.88 ± 0.08) and ESV of (0.90 ± 0.08)). 

Leclerc et al. [94] assessed the extent to which state-of-the-art Deep 
Convolutional Neural networks (DCNN) Encoder/Decoder methods can 
evaluate 2D echocardiographic images, that is, segment cardiac struc
tures and estimate clinical indexes in a single data set. They also made 
the database publicly available with information from 500 patients. The 
results show the specialized analysis of the volume of EDV and ESV. The 
mean correlation was 0.95 with an absolute mean error of 9.5 ml. 
Regarding FE-VE, the results were more in contrast with an average 
correlation coefficient of 0.80 and an average absolute error of 5.6%. 

Leclerc et al. [95] presented a new mechanism of attention for 
refining the endocardium segmentation and epicardium in 2D echo
cardiography. The model used two U-Net networks to derive the region 
of interest from the image before segmentation. The model used 
parameterized sigmoids to perform threshold operations. The architec
ture was trained from end-to-end and named Refining U-Net (RU-Net). 
DICE results were (0.921 ± 0.054) for VE-Endo and (0.948 ± 0.006) for 
VE-Epi. 

Smistad et al. [96] transferred learning from a trained model to 
segment views from A2C/A4C echocardiographic window data from 
106 patients with ALAX vision in conjunction with the CAMUS Dataset, 
which had 500 patients with A2C/A4C views. However, the results were 
unsatisfactory, reducing accuracy. They thus proposed a network with 
A2C, A4C and ALAX Multi-view segmentation to segment the LV, 
Myocardium and Atrium, respectively with DICE of (0.921 ± 0.03), 
(0.786 ± 0.08) and (0.892 ± 0.08). 

Leclerc et al. [97] presented a new multi-stage care network to 
improve the robustness of the segmentation of ECHO 2D LV structures. 
The network was built around the U-Net architecture and consisted of 
two stages: The first network extracted the LV region and its mask. The 
second network used the extracted image to segment the region. The 
solution's performance was assessed with the most extensive set of 
current open access 2D echocardiographic data, the CAMUS Dataset. 
The average Correlation Coefficient result was 0.96 to detect EDV and 
ESV, and the result for MAE was 7.6 ml. For FE, the correlation coeffi
cient was 0.83 and 5.0% for MAE. 

Amer et al. [98] proposed a new method based on Deep Learning 
called ResDUnet for LV segmentation and to estimate EF. The model was 
based on embedded U-Net with extended convolution, where residual 
blocks were used instead of U-net network units. Result was a DICE of 

V.S. de Siqueira et al.                                                                                                                                                                                                                          



Artificial Intelligence In Medicine 120 (2021) 102165

9

0.951 ± 0.030. 
Zyuzin et al. [99] trained a model by combining the U-Net archi

tecture with Residual Blocks, and the U-net ResNet-34 architecture ob
tained respective DICE results of 0.9348, 0.9459, 0.9038 for Ve-endo, 
VE-epi and AE. 

3.6.4. Right ventricular ejection fraction and volume 
Genovese et al. [100] tested the accuracy and reproducibility of a 

new fully automated ML-based software for 3D quantification of the 
right ventricular (RV) size and function. The ML-based 3DE algorithm 
provided accurate and completely reproducible measurements of the RV 
and EF volume in one-third of the patients, with no editing of the image 
limits. In the remaining patients, minimal and rapid editing resulted in 
reasonably accurate measurements with excellent reproducibility. The 
correlation was (r = 0.91) for EDV, (r = 0.92) for ESV, and (r = 0.87) for 
FE. 

Ahmad et al. [101] compared 4 ML algorithms to identify patients 
with depressed RV function using 2D ECHO parameters in conjunction 
with clinical features. The result of the RF algorithm, using the AUC 
metric, was 0.86. 

Beecy et al. [102] presented a new CNN model to track the tricuspid 
annulus on ECHO. The model was trained using 7791 image frames, and 
automated linear and circumferential indices quantifying annular 
displacement were generated. Automated indices were compared to an 
independent reference of cardiac magnetic resonance (CMR) defined RV 
dysfunction (RVEF < 50%). Automated segmentation techniques pro
vided good diagnostic performance (AUC = 0.690–0.730) in relation to 
the CMR reference, compared to the conventional RV indices plane 
(tricuspid annular plane systolic excursion (TAPSE) and RV the systolic 
excursion velocity (S′)), with a high negative predictive value (NPV 
84%–87% vs. 83%–88%). 

Bellavia et al. [103], to identify the most accurate predictors of right 
ventricular failure among clinical, biological, and imaging markers, 
assessed through agreements of different supervised ML algorithms, 
found that Naive Bayes obtained a AUC of 0.970. 

3.6.5. Myocardial wall motion 
Yuan et al. [104] created a procedure that involves a simple appli

cation of non-negative matrix factorization (NMF) to a series of frames 
from a single patient video. The NMF Rank-2 was performed to calculate 
the two final members. The final limbs are shown as intimate repre
sentations of the heart's actual morphology at the end of each phase of 
cardiac function. Besides, the entire time series can be represented as a 
linear combination of these two end-member states, thus providing a 
shallow dimensional representation of the heart's time dynamics. 

Omar et al. [105] proposed a structure for a fully automated image 
analysis to classify abnormalities of the movement of the myocardial 
walls in 2D + T images. They showed that by pre-processing raw videos 
with the asymmetric characteristics method and feeding them a CNN of 
temporal space achieved the best results for classifying myocardial wall 
movement. The accuracy was 85.4%, specificity 77.6%, and sensitivity 
92.8%. 

Outar et al. [106] proposed a method that combines a specific sim
ilarity measure with spatial smoothness and sparse regularizations, 
jointly exploring the statistical nature of B-mode ECHO images, and the 
smoothness and sparse properties of cardiac movement. Three types of 
similarity measures were used: CD2 of (0.147 ± 0.088), MI of (0.157 ±
0.091), and SSD of (0.173 ± 0.105). 

Kusunose et al. [107] investigated whether DCNN could provide 
improved detection of regional wall movement abnormalities (RWMAs), 
and differentiated between groups of coronary infarction regions from 
conventional 2D echocardiographic images. They then compared the 
results of the model with cardiologists (0.97 vs. 0.95), sonographers 
(0.97 vs 0.95), and resident readers (0.97 vs. 0.83). 

3.6.6. Heart diseases - hypertrophy in the left ventricle 
Silva et al. [108] presented a CNN 3D model to classify the level of 

LVEF abnormality, in which LVEF was represented with the following 
continuous values for each class, where 1 = Unhealthy (<45%), 2 =
Intermediate (45% ≥ 55%), 3 = Healthy (55% ≥ 75%), and 4 =
Abnormally high (>75%). Its accuracy was 78.0%. 

Madani et al. [62] used supervised and semi-supervised DL models to 
classify hypertrophy in Normal or Abnormal LV. For the supervised 
model, accuracy was 91.2% using CNN. For the semi-supervised model 
with only 4% of the labeled data, precision was greater than 80% using 
GANs. 

Zhang et al. [14] used CNN for hypertrophic cardiomyopathy (CHD), 
pulmonary arterial hypertension (PAH), and cardiac amyloidosis 
(DAMC), respectively, with an accuracy of 93.0%, 85.0%, and 87.0%. 

Zhong et al. [109] carried out a comparative study using different 
parameters obtained with ECHO 3D Speckle Tracking (Tracking Spots) 
of patients with Acute Myocardial Infarction (AMI). They then built a 
model to predict AMI risks after Percutaneous Coronary Intervention 
(PCI). The results showed that RF was better, with an AUC of 0.960. 

Sabovcik et al. [110] evaluated several ML classifiers, using 67 
routinely measured clinical, biochemical, and electrocardiographic 
characteristics to detect subclinical LV abnormalities as inputs, then 
combined them with the echocardiographic LV diastolic dysfunction 
(LVDD) and the LV hypertrophy (LVH). The RF model was better, with 
an AUC of 0.881 for LVDD and 0.785 for LVH. 

Mishra et al. [111] highlighted that many individual echocardio
graphic variables are associated with patients with CAD. However, they 
have not been combined in prediction models. In this regard, they per
formed an analysis of an unsupervised model for a study of 1000 patients 
with stable CAD, with 15 TTE variables. The result using the Harrell C- 
index for HFI was (0.84; 95% CI, 0.81–0.87). 

Kwon et al. [112] conducted a comparative performance study be
tween the diagnosis of AI models and conventional criteria for detecting 
LV hypertrophy using electrocardiogram and echocardiogram. The re
sults showed that the accuracy of the diagnosis performed by cardiolo
gists was 85.5%, while an Ensemble Neural Network model had an 
accuracy of 88.8%. 

Ghorbani et al. [113] used CNN in a new large data set, showing that 
DL applied to echocardiography can identify local cardiac structures, 
estimate cardiac function, and predict systemic phenotypes that modify 
cardiovascular risk but that are not visibly identifiable for human 
interpretation. The EchoNet Dynamic model accurately identified the 
presence of pacemaker electrodes (AUC = 0.890), enlarged left atrium 
(AUC = 0.860), LV hypertrophy (AUC = 0.750), end-systolic and dia
stolic volume VE (R2 = 0.74 and R2 = 0.70), and ejection fraction (R2 =

0.50), and also predicted systemic age phenotypes (R2 = 0.46), sex 
(AUC = 0.880), weight (R2 = 0.56), and height (R2 = 0.33). The inter
pretation analysis validated that EchoNet-Dynamic gave adequate 
attention to the main cardiac structures when performing tasks that 
humans explain and highlighted the regions' hypotheses that generated 
interest by predicting difficult systemic phenotypes for human 
interpretation. 

Jian et al. [114] trained a CNN model to diagnose LV hypertrophy. 
They obtained the image ROIs using non-local means filtering (Non- 
local means filtering) and opening operation (Opening operation). The 
edge detection algorithm based on segmentation was then used. After 
the contour extraction, the segmentation threshold was adjusted by the 
OTSU algorithm. The model completed the measurement of the LV 
posterior wall thickness selection point. Finally, it determined whether 
the patient had LVH. The error was less than 15%. 

Hedman et al. [115] derived groups based on hFpeF phenotype (hay 
groups), which were based on clinical and echocardiogram data using 
ML compared clinical characteristics, proteomics, and results between 
hay-groups. They identified six hay-groups and observed significant 
differences in the prevalence of concomitant atrial fibrillation (AIF), 
anemia, and kidney disease (p < 0.05). The Elastic Net model obtained 
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the best multi-class evaluation with AUC of 0.790. 
Howard et al. [116] highlighted that current state-of-the-art methods 

for identifying computational visualizations involve two-dimensional 
CNNs. However, these merely classify individual frames of a video in 
isolation and ignore information that describes structure movements 
over the cardiac cycle. In this regard, they tested the effectiveness of the 
new CNN architectures, including time networks and two-stream net
works, inspired by advances in recognition of human action. They 
reduced the error rate generated by traditional CNNs from 8.1% to 3.9%. 
They concluded that advances in precision may be due to the ability of 
these networks to track the movement of specific structures throughout 
the cardiac cycle, such as heart valves. 

Liao et al. [117] proposed a method to model uncertainty in the 
context of 2D ECHO, which is a routine procedure for detecting car
diovascular disease. The quality of the ECHO image and the acquisition 
time depend a lot on the operator's experience level. However, the 
subjectivity of the observer in the assessment of the expert can affect the 
accuracy of the quality quantification. They then modeled intra- 
observer variability to assess ECHO quality as a random uncertainty 
modeling regression problem using categorical labels. A key feature of 
the project was that only a single step forward was sufficient to estimate 
the level of uncertainty for the network output. The model reduced the 
MAE from (0.11 ± 0.009) to (0.09 ± 0.008). 

Kagiyama et al. [118] extracted 328 features based on myocardial 
texture from static ultrasound images. After exploring the myocardial 
texture phenotypes using unsupervised similarity networks, the global 
LV remodeling parameters were predicted using supervised ML models. 
They also developed supervised models to predict the presence of 
myocardial fibrosis using another cohort that underwent cardiac mag
netic resonance imaging (CMR). The extraction of tissue characteristics 
based on texture was feasible in 97% of 534 patients. The similarity 
analysis between patients outlined two groups of patients based on 
texture characteristics: one group had more LV remodeling parameters 
than the other group. Besides, the group was associated with a higher 
incidence of cardiac deaths (p = 0.001) and major adverse cardiac 
events (p < 0.001). 

In the research by Chandra et al. [119], a model was proposed to 
track the mitral leaflets for visualization with greater precision using the 
YOLOv3 mechanism with MobileNet backend. The approach helped 
ultrasonographers to identify mitral leaflets in the A4C view. They used 
a data set of 40 echocardiography videos from different A4C patients, 
data from 30 patients using 1800 images for training and 1800 images 
for testing. They achieved an mAP of 84.4, a detection accuracy of 
98.0% for the mitral valve leaflet, and 90% for the tricuspid valve 
leaflet. The results were IoU of 92.3%. 

Samad et al. [120] conducted a study using ML, using the Random 
Forest algorithm to make combinations of different input variables to 
predict survival after follow-up with echocardiographic analysis. The 
result was a AUC higher than 0.820. 

Raghavendra et al. [121] presented a new computer-aided diagnostic 
system for the automated detection of coronary artery disease using 
cardiac echocardiography images obtained from A4C. The method 
proposed used the discrete double density wavelet and doubletree (DD- 
DTDWT) transformation to decompose the images into different fre
quency sub-bands. The method achieved an accuracy of 96.05%, a 
sensitivity of 96.12%, and a specificity of 96.0% for the linear discrim
inant classifier (LDA) using the Entropy Classification method with 
twelve characteristics. They also proposed a coronary artery disease risk 
index (CADRI) to categorize sick and normal individuals using a single 
value. 

3.6.7. Congestive heart failure 
Raghavendra et al. [122] proposed an automated screening method 

to classify normal echocardiographic images, congestive heart failure 
(CHF) images, and images affected due to dilated cardiomyopathy 
(DCM), using resources extracted from the image decomposed in the 

variational model. These features were selected using particle swarm 
optimization and were classified with the Support Vector Machine 
(SVM) using different kernel functions. Maximum average precision, 
sensitivity, and specificity were 99.33%, 98.66%, and 100%, 
respectively. 

3.6.8. Mitral valve disease 
Moghaddasi and Nourian [123] used the SVM, Linear Discriminant 

Analysis (LDA), and Template Matching (TM) techniques to classify the 
severity of Mitral Regurgitation (RM) based on texture descriptors. The 
SVM classifier using Extensive Uniform Local Binary Pattern (ELBPU) 
and Extensive Volume Local Binary Pattern (EVLBP) had the best ac
curacy with 99.52%, 99.38%, 99.31%, and 99.59%, respectively, for the 
detection of mild and normal RM, moderate and severe RM among the 
echocardiography videos. The method reached a sensitivity of 99.38% 
and a specificity of 99.63% in detecting RM and severity in normal 
individuals. 

Smistad et al. [124] used the model proposed by Ostivik et al. [63] to 
create a program for real-time detection using streaming to detect the 
volume and Mitral Annular Plane Systolic Excursion (MAPSE) of the 
heart on echocardiograms, using a GE Vivid E95 ultrasound device. The 
Bland-Altmann analysis was performed for a dataset of 75 patients. The 
accuracy of the automatic analysis was (− 13.7 ± 8.6) % for EF and 
(− 0.9 ± 4.6) mm for MAPSE. 

3.6.9. Aortic valve disease 
Nizar et al. [125] used a CNN method, with the Faster R-CNN 

Inception V2 model to detect the aortic valve in real-time echocardio
gram videos. They used a Data set with 30 videos: 23 videos with 3685 
frames for training, 2 videos with 344 frames for testing, and 5 videos for 
validation. Accuracy was 94.9%. 

Pereira et al. [126] proposed a structure that used ML methods based 
on DL for the fully automated detection of coarctation aortic (CoA) from 
2D ultrasound clinical data acquired in the PLA, A4C, and SSNA views. 
In a validation set composed of 26 CoA and 64 normal patients, the al
gorithm reached a total error rate of 12.9% (11.5% false-negative error 
and 13.6% false-positive error) when combining classifier decisions into 
three standard echocardiographic visualization plans. 

Khalil et al. [127] proposed an automatic 2D to 3D registration 
framework for the fusion of echocardiogram and computed tomography 
(CT) data, explicitly aiming to guide transcatheter aortic surgery. The 
technique simultaneously addressed the problems of time synchroniza
tion and spatial alignment, offering opportunities of new ways to display 
structural and functional information composed from intraoperative 
transthoracic echocardiography and preoperative CT data. The accuracy 
of the method was (0.81 ± 0.08) and (1.30 ± 0.13) mm in terms of data 
coefficient and Hausdorff distance for the PSAX vision plane of the aortic 
valve, while for PLAX, it was (0.79 ± 0.02) and (1.19 ± 0.11) mm. 

3.6.10. Atrial disease 
Otani et al. [128] conducted a study to determine the utility of the 

fully automated left-chamber quantification software with 3D single- 
beat transthoracic echocardiographic data sets in patients with Atrial 
Fibrillation. His comparative study proved that the automatic quantifi
cation method took significantly less time than the manual method to 
perform the analysis. It took 5 min for the automatic analysis, and 27 
min for the manual one. Excellent correlations were found between 
automatic x manual quantification, for Protocol 1 (P1) of (r =
0.88–0.98), and for Protocol 2 (P2) of (r = 0.94–0.99). 

Borkar & Annadate [129] used a ROI method to extract the charac
teristics of the echocardiogram frame and the SVM classification to 
automatically detect and classify dilated cardiomyopathy (CMD), atrial 
septal defect (DSA), and Normal. Its accuracy was 98.3%. 

Lu et al. [130] proposed a new regression method to identify ab
normalities in echocardiogram B-Mode images. They used appropriate 
DL networks to identify Normal and Abnormal CMD cases 
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automatically. The precision was an AUC of 0.840. 

3.6.11. Resynchronization therapy 
Lei et al. [131] sought, for the first time, to discover new analytical 

approaches to improve the prediction of Cardiac Resynchronization 
Therapy (CRT) responses in the pre-implementation of pacemaker de
vices in patients. The approach used three ML algorithms (SVM, KNN, 
Random Subspaces) in a total of 38 resource combinations. They found 
that the resources combined with QRSd/RWT consistently outperformed 
the combinations without them. For each of the three algorithms, the 
combination of triple features of QRSd/RWT, LBBB, and non-ischemic 
cardiomyopathy repeatedly increased the classification rate by more 
than 8%. QRSd is Regularization Duration on QRS of the electrocardi
ography (ECG), RTW is Relative Wall Thickness, and LBBB is left bundle 
branch block. The best performance for predicting the CRT response 
occurred with the SVM model, which proposed real QRSd/RWT values 
that favored CRT responses in patients with and without LBBB. An AUC 
of 0.848 was obtained. 

3.6.12. Improvements in echocardiographic images 
Gifani et al. [132] performed a comprehensive comparison of algo

rithms for sparse recovery, where Bayesian Compressive Sensing (BCS), 
the Bregman iterative algorithm, and Orthogonal Matching Pursuit 
(OMP) were used to develop a new method. The performance of the 
proposed method was then evaluated and compared with other stain 
reduction filters. The experimental results showed that the algorithm 
could be used to improve edges and reduce blur. 

Punithakumar et al. [133] proposed a new approach to fusing mul
tiple 3D echocardiography images using an optical tracking system that 
incorporates breath-holding position tracking to infer that the heart 

remains in the same position during different acquisitions. The method 
improved the cardiac field of vision (35.4 ± 12.5%). 

The study by Abdi et al. [134] aimed to reduce user variability in 
data acquisition by automatically computing a score for echo quality 
from operator feedback. For this, they developed a DL model based on 
CNN, trained with a large set of samples, to obtain ECHO images for A4C 
vision. For training, testing, and validation they used 6916 ECHO images 
with the final systolic segmentation annotated manually by a specialist 
cardiologist and received a score between (0 and 5), where “0” was not 
acceptable and “5” was excellent. The result using the MAE metric was 
(0.71 ± 0.58). 

Diller et al. [135] investigated DL Autoencoder algorithms to remove 
noise and artifacts from transthoracic echocardiograms with A4C vision. 
The model sought to identify noise and artifacts, especially in patients 
with congenital heart disease. 

Wu et al. [136] developed an algorithm using PCA and SPCA to 
improve the echocardiogram using a supervised noise reduction col
lector to incorporate context-relevant data-driven video movement 
instead of learning this structure directly from noisy image data. 

Girum et al. [137] proposed a new efficient DL method to accurately 
segment image labels while generating a set of annotated data for DL 
methods. It involves the prediction of prior knowledge based on GANs 
from pseudo-contour reference points. The predicted prior knowledge 
(that is, the contour proposal) was refined using a CNN that took 
advantage of the predicted prior knowledge information and the raw 
input image. The poorly supervised method obtained an accuracy of 
(98.8 ± 0.42%). 

Teng et al. [138] addressed interactive translation with limited an
notations using learning transfer. First, they trained two main inde
pendent networks, the main ultrasound draft network (U2S), and the 

Fig. 3. Superficial overview of the steps to automate ECHO.  
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main ultrasound draft network (S2U). U2S translation is similar to a 
segmentation task with region boundary inference. Therefore, the main 
U2S network was trained with the U-Net network in the public seg
mentation dataset of VOC2012. S2U aimed to recover the texture of the 
ultrasound. The main S2U network was a decoder network that gener
ated ultrasound data from random inputs. After pre-training the main 
networks, an encoding network was connected to the main S2U network 
to translate the ultrasound images into sketch images. Finally, they 
joined the transfer of U2S and S2U learning with the CGAN Framework. 
The results using the DICE metric for {1,5,10} shot were, respectively, 
{0.902, 0.913, 0.921}. 

4. Discussion 

Interpretation of an echocardiogram depends on the physician's 
experience. For Sengupta and Adjeroh [139], recent interest in using 
artificial intelligence techniques may help alleviate doctor workloads, 
reducing repetitive and tedious tasks involved in diagnosing and 
analyzing data and patient images. 

The SLR results indicate that the echocardiography research com
munity is making significant progress in automated ECHO analysis. The 
popularization of DL and the increase in computational power in recent 
years has contributed significantly to improving the accuracy of the 
results involving computer vision. Although there have been notable 
developments in the use of AI in echocardiography, the area is still open. 
There are several research possibilities, such as: improving the accuracy 
of the models for the segmentation, detection, and classification of 
cardiac structures; proposing new methods capable of carrying out 
automated ECHO analyses; developing new techniques for extracting 
features from ECHO images; experimenting with pre-trained DL models 
for segmentation, detection, and classification of images available in the 
literature and the transfer of learning to the specific domain of ECHO; 
optimizing the computational time of the models to enable real-time 
evaluation; proposing methods capable of reducing the complexity of 
3D ECHO analysis; and the use of RPA (Robotic Process Automation) in 
the final phase of ECHO automation, to capture text from images, apply 
model inference, record information in a database, among others. 

In Fig. 3, a superficial view of the steps required for the automation 
of ECHO is presented. 

4.1. Analysis of articles 

The SLR article quantification obtained the following percentages: 
ECHO Transthoracic 72.03%, ECHO Transesophageal 9.32%, ECHO 
Doppler 9.32%, ECHO Fetal 5.09%, and ECHO Stress 4.24%. 

4.1.1. Transesophageal 
The contributions presented for 2D ETE images were: detection of 

the cardiac vision plane A4C [22], estimating basal deformation during 
the cardiac surgery procedure [23], and measurement of the aortic ring 
[24]. For 3D ETE were the following: segmentation of the mitral ring, 
detection and classification of disease in the mitral valve 
[26,27,28,29,30,31], the aortic valve [25], and the tricuspid valve. Most 
articles in table 3.2.6 made contributions to support medical decisions in 
diagnosing valve diseases. 

4.1.2. Fetal 
The ECHO Fetal is still little explored, and the approaches were as 

follows: detection of the cardiac vision plan [33], segmentation and 
detection to quantify cardiac structures [34,35,36,37], and classification 
of fetal heart disease [32]. All approaches used 2D images. 

4.1.3. Doppler 
The articles on ECHO DOPPLER adopted the following approaches: 

detection of the diastolic end of the Doppler spectrogram [39], 2D and 
3D frame interpolation [40], improvement in the quality of the capture 

blood flow velocity [41,42,43], and Heart Disease Classification (hy
pertrophic cardiomyopathy [37], myocardial infarction [45], mitral 
regurgitation with 2D and 3D ECHO [46], severe dilated cardiomyop
athy [47], coronary heart disease and heart failure [48], and degrada
tion of the aortic valve). 

4.1.4. Stress 
For ECHO Stress, approaches were applied to detect and classify 

coronary artery diseases [50,51], myocardial assessment [52,54] and 
cardiovascular risk prediction [53]. 

4.1.5. Transthoracic 
The results showed that 72.03% of the articles addressed ETT. Dis

cussion was divided by approaches:  

• The Cardiac Vision Image acquisition plan represented 8.40% of the 
articles, which presented different approaches as well as the 
complexity of the study, as in the article by Zhang et al. [14] that 
classified 23 types of views with 84.0% accuracy; In the work by 
Madani et al. [61] 15 types of visualization were classified, with an 
accuracy of 91.7%. Ostvik et al. [63] obtained an accuracy of 98.3% 
in 7 types of visualization. All used CNN models for classification.  

• Evaluation of cardiac functions was performed by 36.13% of the 
articles in the SLR. Automating Left ventricular segmentation, 
detecting myocardial walls to estimate LV volume, and ejection 
fraction can reduce the manual routines of doctors allowing them to 
serve more patients. In the opinion of Kuronose et al. [107] echo
cardiographic evaluation using artificial intelligence may not be 
necessary for specialists; however, quantitative evaluation is never
theless a great advantage. For Dong et al. [66] estimation of LV 
volumes from 3D echocardiography (3DE) is a popular clinical 
approach for the accurate assessment of LV function in diagnosing 
heart disease. On the other hand, Genovese et al. [100] emphasized 
that 3DE yields accurate and reproducible measurements of right 
ventricular (RV) size and function. However, the broad imple
mentation of 3DE in routine clinical practice is limited because 
existing software packages are relatively time-consuming and 
require specific operator skills. In the same vein, Volpato et al. [80] 
pointed out that, although 3DE overcomes many limitations of 2D 
echocardiography, allowing direct measurements of LV mass, it is 
rarely used in clinical practice due to lengthy analyzes. Based on the 
results, it was observed that there are strong indications that the 
challenges posed by automated echocardiogram analyses are related 
to the creation of optimized models capable of providing analyses, 
usability, and precision in real-time.  

• Cardiac pathologies represented 22.68% of articles. Cardiovascular 
disease is one of the most unrestrained causes of death worldwide 
and is considered one of the main diseases in the “middle” and “old” 
ages. [140]. The following studies were identified that address the 
tasks of classifying heart disease: Myocardial wall movements 
[104,52,1,107], Hypertrophy in the Left Ventricle [108,62,14, 
109,110,111,112,113,114,115,116,117,118,119,81,120,121], 
Congestive Heart Failure [122], Mitral Valve Diseases [123,124], 
Aortic Valve Diseases [125,126,127], Atrial Diseases [128,129,130], 
Cardiac Resynchronization Therapy [131].  

• Procedures for improving the quality of TTE images represented 
5.88% of the studies. 

4.2. Answers to research questions  

Q1) In which types of echocardiogram was AI applied to support the 
medical decision? 

The review indicates that AI was applied to the following types of 
ECHO: ECHO Transesophageal in the subsection 3.2 and the articles are 
presented in Table 1; O ECHO Fetal (subsection 3.3) and Table 2; ECHO 
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Doppler (subsection 3.4), Table 3, ECHO of Stress (subsection 3.5) in 
Table 4 and ECHO Transthoracic (subsection 3.6), in Tables 5, 6, 7, 8, 
and 9.  

Q2) What type of echocardiogram was the most studied in research? 

The quantification of the SLR results shows that the ECHO Trans
thoracic corresponded to 72.03% of the articles. This percentage in
dicates that it was the most studied by the research community. Looking 

at Fig. 4, the quantitative discrepancy between ECHO types was evident. 
The other ECHOs represent the following percentages: ECHO Trans
esophageal 9.32%, ECHO Doppler 9.32%, ECHO Fetal 5.09%, and ECHO 
Stress 4.24%.  

Q3) What were the techniques and precision of the applied AI 
models? 

The techniques/methods, metrics and precision are available in 

Table 1 
Articles included in SLR - transesophageal TEE.  

Id Ref. Problem Dim. SPL Vision LT MT MTD/TNQ Metrics Precision  

1 [22] WVC 2D – A4C SP C ImAdaboost Acc 82.84%  
2 [23] DBasal 2D 47 A2C, A4C, PLAX NSP R CNN MAE 7.25% (±4.56%)  
3 [24] AVD 2D 47 – – – Soft Approach r 0.840  
4 [25] AVD 3D 40 PSAX SP C ICP Algorithms Acc 90.00%  
5 [26] MVD 3D 189 – SP S MLRA r 0.740  
6 [27] MVD 3D 33 A4C SP S MvMl-Model r 0.960  
7 [28] MVD 3D 74 – SP D Soft pack MV – –  
8 [29] MVD 3D 6 A2C, A4C SP D AIUS Acc 95.00%  
9 [30] MVD 3D 95 – SP S MB MAE 1.86 ± 1.24  
10 [31] MVD 3D/2D 18 – SP R CNN U-Net MAE Prm = (8.1 ± 6.0) mm, Ar = (1.6 ± 1.4) cm2  

11 [32] TVD 3D – – – – AutoValve Siemens – – 

Samples (SPL), learning type (LT), supervised (SP), unsupervised (NSP), model type (MT), method/technique (MTD/TNQ) classification (C), detection (D), regression 
(R), segmentation (S), window view cardiac (WVC), basal deformation (DBasal), mitral valve disease (MVD), tricuspid valve disease (TVD), aortic valve disease (AVD), 
model biomechanical (MB), multivariate linear regression analysis (MLRA), perimeter (Prm), area (Ar), apical 4 chambers (A4C), apical 2 chambers (A2C), parasternal 
long axis (PLAX), parasternal short axis (PSAX), correlation (r), accuracy (Acc), mean absolute error (MAE). 

Table 2 
Articles included in SLR - fetal echocardiogram.  

Id Ref. Problem Dim. SPL Vision LT MT MTD/TNQ Metrics Precision  

12 [33] WVC 2D 895 A4C SP C DW-Net AUC 0.990  
13 [34] CHD 2D 350 A4C, B4C, P4C SP C MobileNet Acc 94.84%  
14 [35] FCC 2D 12 A4C, LVOT, 3V SP C FCN Acc 75.40%  
15 [36] FCC 2D 91 – SP D CNN/RNN MSE 0.177  
16 [37] FCC 2D 20 A5C SP C SVM Acc (98.0% ± 1.0%)  
17 [38] CHD 2D 91 – SP C DeepLabV3+ DICE Dataset1 = (0.0897 ± 0.027), Dataset2 = (0.889 ± 0.025) 

Fetal cardiac cycle (FCC), congenital heart disease (CHD), parasternal 4 chamber (P4C), basal 4 chamber (B4C), left ventricular outflow tract view (LVOT), three vessel 
view (3V). 

Table 3 
Articles included in SLR - Doppler echocardiogram.  

Id Ref. Problem Dim. SPL Vision LT MT MTD/TNQ Metrics Precision  

18 [39] EDDS 2D 14,861 – SP D CNN/RNN TDC 97.70%  
19 [40] InterPI 2D/3D 15 A4C – I SVM MSE 2D = 0.7536, 3D = 0.2193  
20 [41] Doppler flow 2D 100 – SP C CNN Acc 91.60%, 88.90%  
21 [42] Doppler flow 2D – – – D Snake – –  
22 [43] Doppler flow 2D 30 ALA – C YOLO AP30 90.36%  
23 [44] HCM 3D 139 A4C SP S Ensemble AUC 0.795  
24 [45] FGVE 3D 600 A2C, A3C, A4C SP S KNN + PCA Acc 87.00%  
25 [46] RMi 2D/3D 152 A3C, A4C, PSLA SP R CCoe r 2DPISA = 0.940, 3DFVCD = 0.870  
26 [47] SDCM 2D 98 – SP C Naive Bayes AUC 0.877  
27 [48] CCD, HF 2D 27,776 – SP D DL-model AUC Group1 = 0.958, Group2 = 0.913  
28 [49] AVD 2D – – NSP S SVM Score 0.995, 0.946, 0.849 

End-diastolic in Doppler spectrogram (EDDS), total detection correct (TDC), image interpolation (InterPI), mitral regurgitation (RMi), LV global function (LVGF), 
hypertrophic cardiomyopathy (HCM), severe dilated cardiomyopathy (SDCM), coronary cardiac diseases (CCD) and heart failure (HF), aortic valve degradation (AVD), 
correlation coefficient (CCoe). 

Table 4 
Articles included in SLR - stress echocardiogram.  

Id Ref. Problem Dim. SPL Vision LT MT MTD/TNQ Metrics Precision  

29 [50] CAD 2D 529 – SP C SVM Acc 67.63%  
30 [51] MyO 2D 151 A2C, A4C SP C MLPRT Sens/Esp 91.60%/86.30%  
31 [52] HD 2D 61 BSA, MSA, A3C, A4C SP C CNN Acc 75.40%  
32 [53] CAD 2D 445 – NSP C CM AUC 0.716  
33 [54] HD 2D 15 – NSP A MKL Cor 0.810 

Coronary artery disease (CAD), heart disease (HD), cluster model (CM), myocardial ischemia (MyO), sensitivity (Sens), specificity (Esp), multiparametric (MLPRT). 
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Tables 1 to 9 in the technical/methods, metrics, and precision columns. 
The results are presented separately by type of ECHO, identified by the 
column “Id” from 1 to 120.  

Q4) What were the challenges/limitations in applying AI to each type 
of echocardiogram? 

The Challenges/Limitations of AI use in the ECHO Analysis were 
collected from the articles and added to Table 10.  

Q5) What techniques/methods were the most used? 

Machine Learning techniques based on supervised learning were the 

most used, mainly models based on CNNs. They have good precision in 
the image/video detection, segmentation, and classification tasks. CNN- 
based models were able to detect state-of-the-art solutions to problems 
involving computer vision.  

Q6) How can AI contribute to support medical decisions in analyzing 
echocardiogram images/videos? 

Recent research indicates that systems that use AI have strong po
tential to automate the ECHO analysis process (e.g. automatic deter
mination of the fetal cardiac cycle [2], fully automatic LV area ED/ES 
detection [91], quantification of MV [28], automated myocardial wall 
motion abnormality classification [105], automatic classification of 

Table 5 
Transthoracic echocardiogram - cardiac vision planning.  

Id Ref. Dim. SPL Vision LT MT MTD/TNQ Metrics Precision  

34 [55] 2D 200 A2C, A4C, PSA, PLA SP C BPNN, SVM Acc 87.50%  
35 [56] 2D 52 A2C, A4C, PLA, PSA-MID SP C BoVW Acc 90.00%  
36 [57] 2D 30, 120 – SP C TF-IDF CK (0.89 ± 0.6)  
37 [58] 3D – A4C, A2C, A3C, PSAM, PSAP, PSA-APEX SP C Hough forest Acc 80.40%  
38 [59] 2D 309 A2C, A4C, ALA SP C LC-KSVD Acc 95.00%  
39 [60] 2D 93 A2C, A3C, A4C, A5C, PLA, PSAA, PSAM, PSAP SP C CNN Acc 92.10%  
40 [61] 2D – Vision plan1 SP C CNN Acc 91.70%  
41 [62] 2D – Vision plan1 SP C CNN/GAN Acc 91.20%/92.30%  
42 [63] 2D/3D 470 A2C, A4C, ALA, PLA, PSA, SC4C, SCVC SP C CNN Acc 98.30%  
43 [14] 2D 460 Vision plan2 SSP C CNN Acc 84.00% 

Acronyms of the vision columns: apical three-chamber (A3C), apical five-chamber (A5C), apical long-axis (ALA), PSA of aorta (PSAA), PSA of papillary (PSAP), PSA of 
mitral (PSAM), PSA of aortic valve (PSA-AoV), right ventricular inflow (RV-inflow), basal short axis (SAX-basal), short axis at mid or mitral level (SAX-mid), subcostal 
four-chamber (SUB4C), subcostal inferior vena cava (SCVC), subcostal/abdominal aorta (SUBAO), suprasternal aorta/aortic arch (SUPAO), pulsed-wave Doppler 
(PW), continuous-wave Doppler (CW), M-mode (mmode), and parasternal short-axis apex (PSA-APEX), subcostal four-chamber (SC4C) and vena cava inferior (SCVC), 
Cohen's Kappa (CK). 
Vision Plan1 Text Footnotes [1] and Vision Plan2 Text Footnotes [2]. 

Table 6 
Transthoracic echocardiogram - left ventricular volume and ejection fraction.  

Id Ref. Problem Dim. SPL Vision LT MT MTD/TNQ Metrics Precision  

44 [65] LVEF 3D – – SP S CNN, GVF- 
Snake 

R2 0.818  

45 [66] LVEF 3D 90 – NSP R CDBN e RF AUC EDV: 0.850, ESV: 0.871, EF: 0.863  
46 [67] LVEF, DLG 2D 500 A2C, A4C SP S DCNN B-A EF: (− 13.7 ± 8.6) %, MAPSE: (− 0.9 ± 4.6) mm  
47 [68] LVEF 2D 94 A4C SP S CNN U-Net Acc 92.30%  
48 [69] LVEF 2D 114 A2C, A3C, A4C SP S, C SDM, CNN μ 0.950  
49 [70] LVEF 2D 427 A2C, A4C SP S DFC Acc 92.00%  
50 [71] LVEF 2D – A4C SP S U-Net + Hyb Dice 0.900  
51 [72] LVEF 3D – – SP S FCN R EDV = 0.982, ESV = 0.979, EF = 0.792.  
52 [73] LVEF-V 2D 50 A2C, A4C, A2C + A4C SP S PV-LVNet Cron-α 0.974  
53 [74] LVEF 2D 26 A4C SP S Bag-10 Acc 98.40%  
54 [75] LVEF 2D 26 A4C SP S RFC e DTC AUC 0.930  
55 [76] LVEF 2D 26 A4C  S RFC e DTC AUC 0.930  
56 [77] LVEF 2D – A4C SP S, C CSM, CRP Acc 91.70%  
57 [1] LVEF 2D – A4C, PSA SP  SR-DL MAE CD2: (0.147 ± 0.088), MI: (0.157 ± 0.091), SSD: 

(0.173 ± 0.105)  
58 [78] LVEF 3D 75 ALA SP S Graph cut r EDV: 0.990, ESV: 0.990, LVFE: 0.960  
59 [79] LVEF-V and 

LA 
3D 20 A2C, A4C – S Philips TomTec r EDV: 0.950, ESV: 0.970, EF: 0.910  

60 [80] LVEF 3D 23 A4C SP S ML-Algorithms MAE 126 ± 39 g  
61 [81] CV 2D 340 PLAX, PSAX, A2C, A3C e 

A4C 
SP C CNN Acc 98.10%  

62 [82] LVEF 2D 637 A2C, A4C SP R MPF-Net DICE 0.953  
63 [83] LVEF 2D +

T 
750 A2C, A3C, A4C SP R MV-RAN DICE (0.920 ± 0.04)  

64 [84] SVE 2D +
T 

– PLA, A2C, A4C SSP R U-Net DICE (0.870 ± 0.01)  

65 [85] LVEF 2D 500 A4C SP S FCN/GAN DICE EDV: 0.940, ESV: 0.930  
66 [86] CD 2D 340 PSAX NSP C CNN RMSE Ux = (0.77 ± 0.29), Uy = (0.80 ± 0.31)  
67 [87] LVEF 2D 100 A2C, A3C, A4C SP R DPSN DICE (0.921 ± 0.046)  
68 [88] LV 2D 18 A4C SP R CNN U-Net Acc 83.50%  
69 [89] LV, LA 2D 87 A4C SP C BiSeNet Dice 0.932/0.908  
70 [90] LVEF-V 3D 25 A2C, A3C, A4C SP R AtlasNet DICE 0.970  
71 [91] LVEF 2D/ 

3D 
515 A2C e A4C SP R DL MAD 7.2%  
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Table 7 
Transthoracic echocardiogram - left ventricular ejection volume and fraction using a Camus Dataset.  

Id Ref. SPL Vision MTD/TNQ Metrics Precision  

72 [93]  500 A4C STF DICE EDV: (0.92 ± 0.03), ESV: (0.93 ± 0.04)  
73 [94]  500 A2C, A4C U-Net 2 r EDV: 0.954, ESV: 0.964, EF: 0.823  
74 [95]  500 A2C, A4C RU-Net DICE VE-Endo: (0.921 ± 0.054), VE-Epi; (0.948 ± 0.006%)  
75 [96]  606 A2C, A4C, ALAX U-Net DICE EDV: (0.921 ± 0.03), ESV: (0.786 ± 0.08), EF: (0.892 ± 0.08)  
76 [97]  500 A2C, A4C LU-Net r EDV: 0.96, EsV: 0.83  
77 [98]  500 A2C, A4C ResDUnet DICE EF: 0.951 ± 0.030  
78 [99]  500 A2C, A4C U-Net ResNet DICE EDV: 0.9348, ESV: 0.9459, EF: 0.9038  

Table 8 
Transthoracic echocardiogram - right ventricular ejection fraction and volume and myocardial wall motion.  

Id Ref. Problem Dim. SPL Vision LT MT MTD/TNQ Metrics Precision 

Right ventricular ejection fraction and volume (3.6.4) and myocardial wall motion (3.6.5)  
79 [100] RVEF-V 3D 55 A4C SP S ML-Algorithms r EDV: 0.91, ESV: 0.92, EF: 0.87  
80 [101] RV 2D 155 A4C, PLA, PSA, RVI SP C RF AUC 0.860  
81 [102] TAPSE 2D 101 – SP S CNN AUC 0.840, 0.870  
82 [103] RVF 2D 74 A4C SP C Naive Bayes AUC 0.970  
83 [104] EDS 2D 99 A2C, A4C, PLA, PSA – S NMF r 0.9196  
84 [105] MPC 2D + T – A4C SP C CNN Acc 85.4%  
85 [106] LVEF 2D 3469 A4C, PLA SP R DenseNet + 2-GRU + Lge μ ED: (0.20 ± 0.67), ES: (1.43 ± 1.30)  
86 [107] ARMPC 2D 400 – SP C DCNN Acc 91.7% 

RV inflow (RVI), right ventricular failure (RVF), end diastolic and systolic (EDS). 

Table 9 
Transthoracic echocardiogram - heart diseases.  

Id Ref. Problem Dim. SPL Vision LT MT MTD/TNQ Metrics Precision 

Hypertrophy in the left ventricle (3.6.6), congestive heart failure (3.6.6) and mitral valve disease (3.6.8)  
87 [108] LVEF 3D 30 A4C SP C 3D-CNN Acc 78.0%  
88 [62] LVH 2D – Vision plan1 SSP C CNN/GAN Acc 91.2%/92.3%  
89 [14] DCH, HAP, 

DAMC 
2D 460 Vision plan2 SP C CNN Acc DCH: 93.0%, HAP: 85.0%, DAMC: 87.0%  

90 [109] IAM 3D 135 A4C SP C RF AUC 0.960  
91 [110] LVVDD, LVH 3D 1407 PLAX, A2C, A4C SP C RF AUC LVDD = 0.881, LVH = 0.783  
92 [111] HFI 2D 1000 PSA, A2C, A4C NSP S MLA c–St (0.84; 95% CI, 0.81–0.87)  
93 [112] LVH – 21,286 – SP S Ensemble Acc 88.8%  
94 [113] CD – 3312 A4C SP S EchoNet – –  
95 [114] LVH 2D 50 – SSP S CNN MAE 15%  
96 [115] DC – – – SP R ElasticNet AUC 0.790  
97 [116] WVP 2D 50 – SP R CNN CK 0.947  
98 [117] – 2D 3157 14 vision plan SP R DenseNet MAE (0.09 ± 0.008)  
99 [118] IAM 2D 405 PLA SSP C Ensemble AUC 0.830  
100 [119] DVM 2D 40 A4C SP R MobileNet Acc 98.0%  
101 [81] – 2D 340 A2C, A3C, A4C, PLA, 

PSA 
SP C CNN Acc 98.1%  

102 [120] DC 2D 516 – SP C RF AUC 0.820  
103 [121] DCC 2D 95 A4C SP C LDA Acc 96.05%  
104 [122] DCM 2D 100 A4C SP C PSO e SVM Acc 99.33%  
105 [123] RMi 2D 139 A2C, A4C SP C SVM, LDA Esp/Sens 99.38%/99.63%  
106 [124] LVEF, MAPSE 2D 75 A2C, A4C SP S DCNN r LVEF: (− 13.7 ± 8.6) %, MAPSE: (− 0.9 ±

4.6) mm  

Aortic valve disease (3.6.9), atrial disease (3.6.10), resynchronization therapy (3.6.11) and image improvements (3.6.12)  
107 [125] DAA 2D 30 PSA SP D Faster R-CNN Acc 94.9%  
108 [126] CoA 2D 64 A4C, PSA, SSNA SP C SVM-Ensemble r 0.129  
109 [127] DAA 2D/ 

3D 
10 PLA, PSA SP – Framework HD Sax: 0.81, Plax: 0.79  

110 [128] FA 3D 88 A2C, A3C e A4C SP S Philips 
HeartModel 

r P1: (0.88–0.98), P2: (0.94–0.99)  

111 [129] CMD, DSA 2D – – SP S, C SVM Acc 98.3%  
112 [130] LVEF 2D  A2C, A4C, PLA SP R MP-DL AUC 0.840  
113 [131] TRC 2D 184 A2C, A4C, PLA SP R SVM AUC 0.848  
114 [132] – 2D 17 A2C, A4C – – BCS, BIA, OMP RMSE- 

MAE 
(4.58–0.99), (7.81–1.21), (8.38–0.97)  

115 [133] – 3D 6 P/A – – WaveF STD (35,4 ± 12,5%)  
116 [134] – 2D – A4C SP C PSO + DCNN MAE (0.71 ± 0.58)  
117 [135] – 2D 152 A4C SP – CNN, AE STD (1.5518 ± 0.5904)  
118 [136] – 2D 10 – SP C SMD MSSIM 0.815  
119 [137] HVE 2D 595 – SSP S CNN Acc (98.8 ± 0.42) %  
120 [138] – 2D 5152 – SP R GAN DICE (1, 5, 10) shot: (0.902, 0.913, 0.921) 

Suprasternal notch axis (SSNA), supervised manifold denoising (SMD), mean structural similarity (MSSIM), c statistic (c–St), AutoEnconders (AE), parasternal and 
apical (P/A), wavelet fusion (WaveF), Bayesian Compressive Sensing (BCS), Bregman iterative algorithm (BIA). 
Vision Plan1 Text Footnotes [1] and Vision Plan2 Text Footnotes [2]. 
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echocardiogram views [59], and others). Researchers are exploring 
several existing pre-trained DL models for other problem domains and 
are using transfer of learning to adapt the model to the specific ECHO 
domain. Automating ECHO is a challenging task. However, several ap
plications covering specific problems and mono-tasks have been pre
sented in the literature, offering reasonable solutions. According to the 
SLR articles, the main contributions were the classification of vision 
acquisition from cardiac windows and the identification of systolic and 
diastolic endings to estimate the left ventricular ejection fraction. The 
cardiac movement assessment allowed the assessment of cardiac func
tions, myocardial thickness, valve function, and cardiac contraction. 

4.3. Study limitations 

Our work has certain limitations. We only included papers published 
from January 2015 to October 2020 which are indexed in the main 
search platforms for scientific articles shown in the subsection 2.1. This 
work focused on primary studies that applied AI to automate computer- 

aided diagnosis processes related to ECHO. It was only possible to pre
sent the state-of-the-art for articles that used the CAMUS Dataset. 

We identified that the main limitation of the area was the lack of 
public datasets. Most experimental studies use private datasets, so the 
experiments were not replicable and thus cannot be compared with 
other methods, making it impossible to evaluate the state-of-the-art re
sults. The key to creating accurate models for inference in clinical 
practice is building a dataset from the complete RAW files that is large 
enough so that it can be used in the training and validation steps. The 
files must have the annotations of the measurements of the cardiac 
structures, and the measurements must be associated with the pixels for 
2D evaluation and the voxels for 3D evaluation for each image/video 
extracted from the ultrasound equipment during the ECHO perfor
mance. Also to be highlighted is that the dataset must contain samples 
obtained from multiple ultrasound equipment vendors, considering that 
image visualization varies for each type of equipment. 

5. Conclusion 

The aim of this SLR was to conduct a thorough analysis of the 
research advances related to the use of AI in automated echocardiogram 
analyses. The results are presented according to the types of ECHO: 
Transesophageal, Fetal, Doppler, Stress, and Transthoracic. The articles 
were grouped by ECHO type, with the presentation of mini-abstracts and 
results in Tables 1, 2, 3, 4 and Tables 6, 7, 8, and 9. 

Future research efforts should aim to improve the accuracy of 
existing models in identifying, segmenting, and quantifying cardiac 
functions, classifying heart disease, and dealing with the scarcity of 
public datasets. Prospective studies should be well-designed and re
ported, especially with analyses of state-of-the-art ultrasound images. 
Studies should use ultrasound images from multiple vendors to ensure 
that the studies provide sufficiently accurate estimates for analyzing 
images/videos obtained using various brands and models of ultrasound 
equipment. 

Deep Learning methods can be the key to full echocardiogram 
analysis automation. The results presented in this SLR show that, in the 
last 6 years, there have been significant advances in: (I) identification of 
the windows of cardiac vision plane; (II) identification, segmentation, 
and quantification of cardiac functions; (III) classification of heart dis
ease; and (IV) image quality improvement. 

Therefore, it is possible to conclude that this research topic still re
quires optimized software that can be used in real-time. It is noteworthy 
that this research area is open, offering many research opportunities. 
Therefore, it deserves the attention of researchers aiming to continu
ously improve ECHO quality in order to provide better results for pa
tients, and to support doctors in their diagnoses. 
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