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Abstract—Computer vision is an area have proven to play
an essential role in urban and rural applications like medical,
agriculture, and remote sensing. The use of image processing
methods for simulating the visual capability of robots plays a
crucial role in the consolidation of smart farming. The under-
standing of the complexity of outdoor environments, where the
robot performs its task, is an essential issue for the development
of efficient processes of autonomous mobility, especially in areas
with uneven illumination, unpredictable weather conditions, and
different color shades. In this study, we present a new method to
detect and segment tree trunks from unstructured environments
where natural properties such as lighting and terrain shape form
a variety of non-controlled conditions. We prepared a dataset
with stereo image pairs and ground truth maps to calculate
disparities and to evaluate the proposed method in the application
of smart farming. The results show that the presented approach
can segment trees with high precision, which is an important step
in calculating the disparity of external components by systems
that use the stereoscopic view.

Index Terms—stereo vision; image segmentation; disparity
map; tree detection; smart farming.

I. INTRODUCTION

Computer vision systems deal with such a complex amount
of requirements that it is difficult to prepare a suitable com-
putational model. Depending on the nature of the problem,
not all operational constraints can be defined in such a way
that the volatility in requirements increases the complexity in
the design and construction processes. In such cases, statistical
analysis, empirical evaluation, or even expertise are used to set
at least some scenarios with controlled operating conditions to
stabilize the requirements, e.g., in indoor environments such
as a room, where the structural layout is typically known.

When it comes to outdoor environments some drawbacks
are presented to the visual image analysis in which it has
to face with sudden changes in scene lighting, unpredictable
weather conditions, and with the effect of different color
shades. Such circumstances require efficient techniques ca-
pable of self-adaptation to get optimum objects recognition,
to simultaneously segment, classify and annotate data, and to
recover the geometric properties of a scene.

In rural or semi-rural outdoor environments there is an
increase in complexity. For example, the use of an autonomous
robot in smart farming requires an accurate route during the
working process, e.g., autonomous navigation through the

plantations for the harvesting of fruits in smart farming. This
navigation is, however, difficult to achieve due to regularly
occurring natural obstacles such as tree during harvest. An
autonomous robot needs to react to suddenly appearing tree,
which may be even more complicated due to changes in the
weather conditions, for example.

Although trees are outstanding elements of outdoor scenery,
they vary in a substantial way, in shape, color, texture, in-
tensity, and density of their branches. Besides, natural con-
ditionals such as weather and lighting, and surrounding and
background objects can affect the appearance of a tree due
to shadows, brightness, and occlusions. Because of that, the
recognition of trees or trunk detection is a challenging task
which often uses a segmentation approach.

In general terms, computer vision systems apply a segmen-
tation process as a first step before conducting image analysis
whether in feature extraction, reconstruction, and in classifica-
tion proposals for finding and identifying objects in an image
or video sequence. The segmentation step allows dividing the
complexity of a scene into small pieces of data to be handled
in an isolated fashion. This strategy of reducing the complexity
of a problem is a well-known design principle termed divide-
and-conquer which is enforced in vision applications due to
the various possible interactions, the diversity of inputs, and
the expected results.

In outdoor robot navigation, if a tree is adequately detected,
then it can be both a potential landmark as well as a prominent
obstacle. The first one gives a reference point to the imaging
system, whereas the second one alerts an area to be avoided.
The tree detection is a valuable knowledge which is used to
define autonomous path planning, to label a safe path and to
specify the traversability of an area. To achieve the required
result in robot navigation, the use of specific techniques
accomplish tree detection in which the robot can reconstruct
the scene by calculating the depth.

In addition, stereo vision methods can provide the necessary
information to estimate the depth of objects in a scene. They
are based on the stereoscopic imaging in which two or more
images are collected from the same scene in different points
of view. The projection of a point is traced in a pair of
images, and its disparity is used in conjunction with camera
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parameters to measure the depth of this point. When it is done
for all points, we can build a disparity map that holds the
disparities between corresponding points in different image
planes. Therefore, scene reconstruction can be performed by
providing autonomy to the robot.

In smart farming applications, trunk detection is essential in
harvests or pruning of trees by robots. A method that segments
the trunk from its background and preserves contours and
shapes is necessary to ensure the tree design. A harvesting
robot demands precise information to localize and to detach
the fruit, vegetable or grain, and to not damage the remaining
crop. Likewise, precision information is required for estimat-
ing diameters and tree heights by computer vision systems
deployed in the robot to be able to perform the prune a tree.

In this study, we present a new method to detect and
segment tree trunks from unstructured environments where
natural properties such as lighting and terrain shape form a
variety of non-controlled conditions. It is based on the method
proposed by [1] in which contrast templates were used to
detect tree trunks. We prepared a dataset with stereo image
pairs and ground truth maps to calculate disparities and to
evaluate the proposed method in the application of precision
agriculture.

This work is organized as follows. Section II shows pub-
lished works related to our proposal. Section III shows our
method of trunk detection and segmentation. Section IV shows
the experimental results in which we evaluate the proposed
method and its use in calculating disparities. Section V
presents the conclusion and discussion of this paper.

II. RELATED WORK

Tree detection has been an active area of research in off-road
mobile navigation as well as in traversability classification and
mapping, fruit localization, and forest inventory. Currently,
digital image processing and machine learning techniques are
applied to develop computer vision-based systems in which
trunk, branches, and tree foliage detection are used as natural
landmarks [2], to define safe crossing areas [3], and to apply
automatic dendrometry [4].

As outdoor environments have a variety of adversities, most
of the autonomous navigation proposals for rural or semi-
rural areas treat the problem of detecting trees as a machine
learning assignment. Thus, samples of trees and non-trees are
prepared with a key-feature extractor [3], [5], with a self-
learning framework [6], or even by hand [7], [8].

Ali et al. [7] employed two nor-geometric local image
properties, color, and texture, in their tree detection method
for autonomous navigation. They adopted a heuristic distance
measurement to estimate the distance between forest vehicle
and the base of segmented trees using monocular vision. In
conclusion, they noted that neither color nor texture alone can
give the optimal performance and that HSV and RGB color
space can provide promising results.

Under the assumption that tree trunks can be expected to
stand vertically, Huertas et al. [9] proposed a stereo-based
system integrated with an edge detector method to estimate
the diameters of trees and based on that to construct a

tree traversability image for autonomous off-road navigation.
Differently, Juman et al. [5] used this vertical assumption in
combination with color space and the Microsoft Kinect sensor
to detect tree trunks of oil-palm plantations.

In addition to ground-based robots, the ability to operate
autonomously with minimal human assistance are also in-
vestigated in low-flying aircraft, such as in unmanned aerial
vehicle (UAV). Roberts et al. [10] formulated a model-based
tree detector, making use of motion saliency, to limit mapping
to trees that are nearby to their aerial vehicle. Ortega et al.
[11] presented a methodology for autonomous navigation of
UAV with detection and evasion of trees by using a deep
neural network approach, and Jiang et al. [12] presented
an autonomous flight method that identifies obstacles and
performs trajectory mapping to be used in precision forestry
applications.

Typically, vision-based systems that use stereo vision ap-
proaches need to deal with feature-matching processes which
can fail on unstructured terrain [13] and can be inaccurate due
to possible parallax errors [7]. Thus, an appropriate approach
is required to deal with challenges in stereo correspondences
which can be complex due to some digital image issues as
photometric distortions and noise, foreshortening, perspective
distortions, ambiguous patterns, and occlusions and disconti-
nuities [14].

The correspondence problem is at the core of each stereo
algorithm, and because of that it has been extensively re-
searched [15]. Yoon and Kweon [16] introduced an adaptive
support weight stereo matching based on photometric and
geometric relationship. Gerrits and Bekaert [17] presented a
stereo matching algorithm which uses a color segmentation
process to reduce the influence of outliers in the window-
based aggregation process. Laureano and Paiva [18] consid-
ered a multi-resolution analysis that uses images pyramids and
perceptual grouping weight to present a stereo method based
on adaptive-windows. Mattoccia [15] underlined the geometric
and photometric structure of a scene to formulate multiple
assumptions for local consistency. Furthermore, stereo vision
methods were evaluated to present a comparison among them
[19], [20], [21].

Determining correspondences in two or more images is a
challenging task in both indoor and outdoor environments.
However, the uncontrolled nature of external ambiances in-
creases this task and stereo vision methods may not work
properly. The assumption that corresponding pixels are in the
stereo images pair can be affected by soft or drastic changing
in lighting, shadows, sudden camera movement due to irregu-
lar terrain, and by repetitive patterns, which are very common
in forest environments. Taking these issues into account, we
propose a method to be applied in the context of external
environments. Two main requirements were formulated: (1)
the method must detect tree trunk and (2) it must preserve the
tree design (shape and boundaries).

III. PROPOSED METHOD

In our study, we considered complex scenes where tree
trunks are prominent obstacles. The proposal begins with the
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detection of trees to thus delineate their design. The input
image, I , is divided into small pieces and each of them goes
through contrast models that distinguish objects based on their
color and brightness. In the tests, the size of the slices was
defined as 20 rows × d columns, where d was the width of I .

Considering that natural light produces a relevant contrast
between the background and foreground of a scene, we used
the kernel function proposed by [1] to create models that
extract vertical features of trees. Eq. 1 reproduces this contrast
model function.

x′ = y sin(θ), y′ = y cos(θ)

B(x, y) = exp(−0.5 · (x
′2

sx
+
y′2

sy
)) cos(2πfx′), (1)

where sx and sy are half width and height of the kernel,
x ∈ [−sx, sx], y ∈ [−sy, sy]. The frequency and orientation
of the model filter are set to be f = 1/(2 ∗ sx) and θ = 90◦,
respectively.

These models are convolved with the input image I , F =
(B ∗ I), to produce curves of contrasting areas. Each model
filter produces its own curve through the summed-up value of
each column of F , Eq. 2.

curve(1, j) =
n∑

j=1

m∑
i=1

F (i, j) (2)

curve is a vector containing the sum of the values of all rows
i of each column j of the F , n is the number of columns and
m is the number of rows of F .

The valleys of the curves indicate dark areas that contrast
with a bright background. The width of these valleys is
measured and based on them some bounding boxes, or patches,
are placed in the slice of the image I to select only those
areas. Besides, a threshold, 0 < α ≤ 1, is applied to accept
only valleys at a specific depth. If the α is set to a higher
value, then it accepts more curves. In the tests, α was set the
value 0.4.

As the best model filter B is unknown, it is necessary
to explore different filter sizes. Consequently, each one of
them forms their own bounding boxes and to select the most
appropriate for an area we used the Greedy Non-Maximum
Suppression (GreedyNMS) [22]. In the tests, we used models
with size 8, 14, 22, 44, 64, and 84.

To reduce the influence of brighter points inside the patches,
a local evaluation is applied to discard these points. These
patches are converted to the HSV (Hue, Saturation, Value)
color space and the channel value v is used to detect points
with high values (Eq. 3).

v =
1

n

n∑
i=1

vi σ =

√√√√ 1

n− 1

n∑
i=1

(vi − v)2 (3)

where n is the number of pixels in a bounding box and i is
the index of each one of them. Hence, v passes through a
threshold evaluation such that

V (i) =

{
1 if vi < (v + 3σ),

0 otherwise
(4)

Eq. 4 is a logical binarization that is based on a condition
which detect points further from the mean, v, in 3 times the
standard deviation, σ. Bright points inside a patch are labeled
with 0 and other points are labeled with 1. Based on this result,
points that were labeled with 0 are removed from the original
patch (RGB image), and the others are maintained. After these
steps, a partial segmented image, Is, is obtained.

Furthermore, a global evaluation is applied in the original
image, I , as well as in the remained image, Is. In the first case,
a bright detection function was developed to detach trees from
the background (bright points). In the second case, variability
analysis, morphological operators and a tree attribute are used
to detach trees from the ground.

A simple measure of variability is used to remove non-
tree points. The mean absolute deviation (MAD) is employed
considering the remaining points of Is. Eq. 5 and 6 are
responsible for calculating the MAD around the mean values,
V and U .

m′ =
1

n

n∑
i=1

|Vi − V | (5) m′′ =
1

n

n∑
i=1

|Ui − U | (6)

where V is the value channel from Is (converted to the
HSV color space) and U is calculated according to Eq. 7 (an
intuitive equation developed by [23]).

U = G ·max [(G−R), 0] ·max [(G−B), 0] (7)

R, G and B are the three channels of Is, red, green and blue,
respectively.

Hence the MAD values, m′ and m′′, are used to define a
threshold (th) that discards non-tree pixels. Eq. 8 checks if
points of Is are in accordance with this threshold (receive the
value 1).

Is(i) =

{
1 if (|Vi − V | < th1) or (|Ui − U | < th2),

0 otherwise
(8)

where th1 = λ1m
′ and th2 = λ2m

′′, if the values of λ1 and
λ2 increase, then it will accept more bright and green points.
In the experimental tests, we set them with values 5 and 1.3,
respectively. Points of Is at index i that receive the value 0
are then discarded.

In the same way, an energy function is considered to label
bright points from image I . Firstly, the three RGB channels
of I are used, and a differential evaluation among them are
employed to emphasizes areas of brightness. In Eq. 9 a weight
is calculated for each pixel from I and stored in W . After
that, a logical validation is performed and a logical image, T ,
is yielded, Eq. 10.

W = B·max [(B −R), 0]·max [(B −G), 0]·max [(G−R), 0]
(9)

To complete this step, we consider the HSV color space.
The input image I is converted to HSV and the logical image
T passes through an evaluation in which Eq. 11 checks the
influence of bright points one more time to guarantee that only
intense bright points will be discarded. Then, based on T , the
image Is is updated to remove those detected points.

2019 IEEE Symposium on Computers and Communications (ISCC)

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:08:00 UTC from IEEE Xplore.  Restrictions apply. 



T (i) =

{
1 if Wi = 0,

0 otherwise
(10)

T (i) =

{
1 if (Ti 6= [Hi > Si]) and (Ti 6= [Hi > Vi]),

0 otherwise
(11)

where H , S and V are the channels hue, saturation and value
from the converted image I into the HSV color space.

Furthermore, as can be noticed, trees have one common
feature that qualifies them by their structures: trunks have a
vertical, or a semi-vertical shape. We used this attribute to
track tree trunks to ground contact. A user parameter, 0 <
γ ≤ 1, controls the portion of the image, Is, that is used in
this step. For example, if γ = 0.3 then in the first 30% rows
of Is no changes is applied and in the others rows, an opening
operation is employed to remove some small artifacts from Is.
After that, it checks the connection of the remaining points in
the vertical direction with the borderline defined by γ. In the
tests, γ was set with the values 0.2 or 0.4.

IV. EXPERIMENTAL RESULTS

The evaluation of the proposed method was divided into
two phases. The first one evaluates the quality of our method
in keeping parts of trees and removing non-tree parts. The
second one evaluates the use of this method by stereo vision
approaches in calculating the disparity of trees. To perform
these evaluations, we prepared an original dataset with images
collected from rural and semi-rural environments. We used a
monocular RGB camera, and for each scene, we took two
shots shifted by a horizontal movement of the camera, which
provided a stereo image dataset1 with 11 corresponding image
pairs.

These images were downsampled to 384×288 and carefully
segmented by hand to allow the analysis of the results, acting
as reference images in the experiments. In addition, for each
image pair, two ground truth disparity maps were prepared by
following these steps: (1) we calculate the center of mass from
both segmented images; (2) we measure the distance between
these two points in the x−coordinate; (3) the distance result
was used to set the disparity value for all points in the tree
segment; and (4) a tree disparity map was yielded considering
the tree position in both images; thus two disparity maps were
prepared. Fig. 1 shows a sample of this image dataset.

A. Quality evaluation
In the methodology explained in Section III, the main

objective is to obtain the segments of trees that are in a
scene. An image quality evaluation allows to measure how the
method reach this task. Four different metrics were considered
to evaluate the degradation of the trees by the proposed method
in comparison to the images that were manually segmented.
We used the Structural Similarity Index (SSIM), Complex-
Wavelet Structural Similarity (CW-SSIM), Normalized Cross-
Correlation (NCC), and Peak Signal to Noise Ratio (PSNR).

1The dataset is available on https://github.com/vicom-ifgo-
urutai/datasets/blob/master/dataset_iscc2019.zip

(a) (b) (c) (d)

Fig. 1. A sample of the image dataset. Stereo image pairs, I(1) and I(2), are
shown in column (a). The stereo segmented images are shown in column (b).
Column (c) shows the centers of mass that were used to define the disparity
maps (d).

With the exception of the last one, the output of the first three
metrics varies in a standard range from 0 to 1. PSNR metric
was set to vary from 0 to 48.13. Outputs close to the maximum
value mean a better result.

To run the experiment, we divided the stereo image pairs
into two groups: I(1)s which contains the segmented images
of the left camera; and I

(2)
s which contains the segmented

images of the right camera. In TABLE I, the presented values
represent the average of each group. The results indicate
that the proposed method in this article reached important
outcomes as the SSIM greater than 0.9.

TABLE I
QUALITY MEASURES.

SSIM CWSSIM NCC PSNR
I
(1)
s 0.9188 0.8584 0.8240 27.58

I
(2)
s 0.9167 0.7932 0.8720 26.75

Furthermore, we evaluate the hits and fails of the proposed
method by calculating the true positive rate (TPR), true
negative rate (TNR), false positive rate (FPR), false negative
rate (FNR), and the accuracy (ACC). TABLE II shows these
statistical results in which TPR and TNR obtained more than
77% assertiveness, and few errors, according to FPR and FNR.
Besides, the accuracy was greater than 96% in both image
groups.

TABLE II
STATISTICAL MEASURES.

TPR TNR FPR FNR ACC
I
(1)
s 0.7795 0.9896 0.2205 0.0104 0.9683

I
(2)
s 0.7781 0.9841 0.2219 0.0159 0.9627

Fig. 2 shows the visual results of the proposed method.
In the first column, a pair of input images is presented, and
in the second column, their respective ground truth images.
The third column presents the results of this proposal, and the
fourth column shows the points that were wrongly classified,
false positive and false negative.
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(a) (b) (c) (d)

Fig. 2. Results from the proposed method. A stereo image pair is shown
in column (a) and the ground truth in column (b). Column (c) shows the
segmented outputs and column (d) shows the points at which the method did
not hit, false positive (red) and false negative (yellow).

B. Disparity evaluation

Firstly, we used the Bad-Pixel Error as a quantitative
measure to estimate the errors from the computed disparity
maps. It computes the error between a computed disparity map
D(x, y) and its respective ground truth map T (x, y), as given
by Eq. 12.

B =
100

N

∑
(x,y)

(|D(x, y)− T (x, y)| > δ) (12)

where N is the total number of pixels and δ is a disparity
error tolerance (in this work δ = 1).

The segmented images, I(1)s and I(2)s , were used as inputs
in eight different stereo vision methods and their outputs
were compared with the ground truth maps employing the
considered measure. We calculated the disparity maps in two
matching ways, i.e., one that considers the image I(1)s as the
reference image (I(1)s → I

(2)
s ) and another that considers I(1)s

as the target image (I(1)s ← I
(2)
s ). Thus, we yielded two groups

of disparity maps, D(1)
1 and D(2)

2 , to be compared with their
corresponding groups of ground truth maps, T (1)

1 and T (2)
2 .

In this evaluation, we used the following stereo vision
methods: Fixed Window (FW), Shiftable Window (SW) [24],
Large Occlusion (LO) [25], Bilateral support weights (BL and
BLnoSpatial) [21], Multi-resolution and Perceptual Grouping
(MRPG) [18], Guided filter support weights (GF) [26], and
Segmentation-based stereo method (SB) [17].

TABLE III summarizes the results. The MRPG method
reached the lowest error in the first column while the best
performance in column two was reached by the BLnoSpatial
method. Despite this note, it is clear that the disparity calcula-
tion error is almost the same for all methods, which means that
even simple methods such as FW and SW can do very well
compared to more robust methods such as BL. Fig. 3 shows
some samples of the disparity maps yielded by the considered
stereo methods.

We also calculated the overlap score between the yielded
disparity maps and their ground truth maps, o(D,T ) = n(D∩
T )2/(n(D)n(T )), [1]. Three parameters were defined: Tree,
Non − Tree, and ALL. The first one considers only the
tree area, while the second one considers only the non-tree
area. Finally, the last one considers all points of the image

TABLE III
DISPARITY MAP EVALUATION.

I
(1)
s → I

(2)
s (%) I

(1)
s ← I

(2)
s (%)

FW 8.26 8.84
SW 7.90 8.24
LO 9.55 10.0
BL 7.31 7.55

BLnoSpatial 7.25 7.53
MRPG 6.98 7.72

GF 7.42 7.71
SB 7.61 8.23

(a) (b) (c) (d)

Fig. 3. Disparity map results. The original images in column (a). The
segmented images in column (b). The yielded disparity maps in column (c),
and the ground truth maps in (d). From rows 1 to 4, it presents the results
from the methods LO, BL, MRPG, and SB, respectively.

to be compared with the hand-labeled image of the dataset.
Considering the average of the two groups, the overlap was
greater than 0.9 in the parameter ALL, which indicates that
tree and non-tree points were well-segmented from each other.
On the other hand, in the Tree parameter, the results were
less than 0.7, which shows that portions of tree were missed
(TABLE IV).

TABLE IV
OVERLAP EVALUATION.

Tree Non− Tree ALL

o(D
(1)
1 , T

(1)
1 ) 0.69 0.96 0.93

o(D
(2)
2 , T

(2)
2 ) 0.66 0.95 0.92

Despite of this, we also applied the same strategy that were
used to obtain the ground truth maps. Thus, the center of mass
of each segment was used to estimate the projection of the tree
in the other image plane. A Bad-Pixel error of 8.25% was
obtained which is close to the results presented in TABLE III,
but in this case, with a simpler approach.

Furthermore, the proposed method can deal with some out-
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comes produced by stereo vision methods, as ghost artifacts2,
streaking effect3, and foreground fattening4. In Fig. 4 these
artifacts are presented and they can be easily removed since the
area of the tree is known. In this way, points on the disparity
map which are outside of the tree segment can be discarded
by conserving only the points in the segment.

(a) (b) (c) (d) (e)

Fig. 4. Disparity map artifacts. In column (a), the input image. Columns (b),
(c), and (d) show samples of the ghost artifact from SW, streaking effect from
LO, and foreground fattening from FW. The final result in column (e) was
obtained from BL method.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce a new method for segmenting
tree trunks from their backgrounds based on image color
information and contrast models. We highlight that outdoor
environments are complex to model due to natural constraints
that are difficult to predict, as adverse weather conditions
and frequent changes in lighting. Thus, they require efficient
approaches for the development of computational solutions to
be used in practical applications, such as in smart farming
demands.

In our experiments, the results showed that the proposed
method preserves contours and shape of the trees to ensure
their design, finding the areas of trees and detaching them
from non-tree areas. In this way, it can reach suitable results
in disparity calculation.

As the next phase of the work, we intend to increase the
dataset with the inclusion of scenes from dense forests, as well
as the incorporation of image salience techniques to detect the
most prominent tree in such scenes.

REFERENCES

[1] Y. Lu and C. Rasmussen, “Tree trunk detection using contrast templates,”
in Image Processing (ICIP), 2011 18th IEEE International Conference
on. IEEE, 2011, pp. 1253–1256.

[2] X. Chen, S. Wang, B. Zhang, and L. Luo, “Multi-feature fusion
tree trunk detection and orchard mobile robot localization using cam-
era/ultrasonic sensors,” Computers and Electronics in Agriculture, vol.
147, pp. 91–108, 2018.

[3] J. Mendes, F. N. dos Santos, N. Ferraz, P. Couto, and R. Morais, “Vine
trunk detector for a reliable robot localization system,” in 2016 Inter-
national Conference on Autonomous Robot Systems and Competitions
(ICARSC). IEEE, 2016, pp. 1–6.

[4] C. Cabo, C. Ordóñez, C. A. López-Sánchez, and J. Armesto, “Auto-
matic dendrometry: Tree detection, tree height and diameter estimation
using terrestrial laser scanning,” International Journal of Applied Earth
Observation and Geoinformation, vol. 69, pp. 164–174, 2018.

2Points not presented in the original stereo pair that appear mainly due to
large parallax between the adjacent images.

3It results from the lack of coherence in the vertical direction when a 1-D
optimization problem is applied.

4Incorrect estimations near the objects boundaries caused by pixels at
different depths.

[5] M. A. Juman, Y. W. Wong, R. K. Rajkumar, and L. J. Goh, “A novel tree
trunk detection method for oil-palm plantation navigation,” Computers
and Electronics in Agriculture, vol. 128, pp. 172–180, 2016.

[6] G. Reina, A. Milella, and R. Rouveure, “Traversability analysis for off-
road vehicles using stereo and radar data,” in 2015 IEEE International
Conference on Industrial Technology (ICIT), March 2015, pp. 540–546.

[7] W. Ali, F. Georgsson, and T. Hellstrom, “Visual tree detection for
autonomous navigation in forest environment,” in Intelligent Vehicles
Symposium, 2008 IEEE. IEEE, 2008, pp. 560–565.

[8] T. Yıldız, “Detection of tree trunks as visual landmarks in outdoor
environments,” Ph.D. dissertation, bilkent university, 2010.

[9] A. Huertas, L. Matthies, and A. Rankin, “Stereo-based tree traversabil-
ity analysis for autonomous off-road navigation,” in Application of
Computer Vision, 2005. WACV/MOTIONS’05 Volume 1. Seventh IEEE
Workshops on, vol. 1. IEEE, 2005, pp. 210–217.

[10] R. Roberts, D.-N. Ta, J. Straub, K. Ok, and F. Dellaert, “Saliency
detection and model-based tracking: a two part vision system for small
robot navigation in forested environment,” Proceedings of SPIE - The
International Society for Optical Engineering, vol. 8387, pp. 27–, 05
2012.

[11] S. Dionisio-Ortega, L. O. Rojas-Perez, J. Martinez-Carranza, and
I. Cruz-Vega, “A deep learning approach towards autonomous flight in
forest environments,” in 2018 International Conference on Electronics,
Communications and Computers (CONIELECOMP), Feb 2018, pp. 139–
144.

[12] S. Jiang, K. A. Stol, W. Xu, and B. Graham, “Towards autonomous
flight of an unmanned aerial system in plantation forests,” in 2016
International Conference on Unmanned Aircraft Systems (ICUAS), June
2016, pp. 911–919.

[13] H. Balta, G. De Cubber, D. Doroftei, Y. Baudoin, and H. Sahli,
“Terrain traversability analysis for off-road robots using time-of-flight
3d sensing,” in 7th IARP International Workshop on Robotics for Risky
Environment-Extreme Robotics, Saint-Petersburg, Russia, 2013.

[14] S. Mattoccia, “Stereo vision: Algorithms and applications,” 2013.
[Online]. Available: http://www.vision.deis.unibo.it/smatt/stereo.htm

[15] ——, “A locally global approach to stereo correspondence,” in Computer
Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on. IEEE, 2009, pp. 1763–1770.

[16] K.-J. Yoon and I.-S. Kweon, “Locally adaptive support-weight approach
for visual correspondence search,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),
vol. 2, June 2005, pp. 924–931 vol. 2.

[17] M. Gerrits and P. Bekaert, “Local stereo matching with segmentation-
based outlier rejection,” in Computer and Robot Vision, 2006. The 3rd
Canadian Conference on. IEEE, 2006, pp. 66–66.

[18] G. T. Laureano and M. S. V. de Paiva, “Disparities maps generation
employing multi-resolution analysis and perceptual grouping,” in 2008
First Workshops on Image Processing Theory, Tools and Applications,
Nov 2008, pp. 1–6.

[19] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for
stereo matching,” in Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on. IEEE, 2007, pp. 1–8.

[20] G. Vieira, F. Soares, N. Sousa, J. Gil, R. Parreira, G. Laureano, R. Costa,
and J. Ferreira, “Stereo vision methods: from development to the
evaluation of disparity maps,” in Proceedings of XIII Workshop de Visão
Computacional, 2017.

[21] A. Hosni, M. Bleyer, and M. Gelautz, “Secrets of adaptive support
weight techniques for local stereo matching,” Computer Vision and
Image Understanding, vol. 117, no. 6, pp. 620–632, 2013.

[22] J. H. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum
suppression.” in CVPR, 2017, pp. 6469–6477.

[23] S. Eddins, “It ain’t easy seeing green (unless you have matlab),” 2014,
[Accessed 20 Jul. 2018]. [Online]. Available: https://goo.gl/3ybj9q

[24] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International journal of
computer vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[25] A. F. Bobick and S. S. Intille, “Large occlusion stereo,” International
Journal of Computer Vision, vol. 33, no. 3, pp. 181–200, 1999.

[26] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast
cost-volume filtering for visual correspondence and beyond,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 2, pp. 504–511, Feb 2013.

2019 IEEE Symposium on Computers and Communications (ISCC)

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:08:00 UTC from IEEE Xplore.  Restrictions apply. 


