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Abstract—The understanding of the complexity of outdoor
environments is an essential issue for the development of efficient
processes of autonomous mobility, especially in areas with uneven
illumination and without a well-defined road. In this context, the
detection of ground and obstacles plays a relevant role in giving
the first impressions of the external surroundings to a machine.
Furthermore, it can guide independent movements and decisions.
In this study, we introduce a segmentation method that detects
ground and non-ground points of complex scenes under different
exposures to illumination, textures, and shading. We prepared a
dataset with images collected from some environments in which
trees are prominent obstacles. The proposed method uses contrast
templates, statistical measures, and morphological operators to
reach the ground segmentation. Experiments showed satisfactory
results in which trees were well detected and the ground was
efficiently segmented with the maintenance of the structure of
the image.

Keywords: image segmentation; tree trunk detection; ground
detection; feature engineering; computer vision.

I. INTRODUCTION

In this study, we present an approach to segment ground
areas from unstructured and dynamic environments to deal
with the perception of the scenes for autonomous navigation.
It is an essential task for outdoor mobile robots because
the delineation of the ground can be used to estimate the
traversability of the terrain in order to navigate safely, as
avoiding obstacles.

Traversability estimation is quite challenging due to a
variety of adversities that make it an ill-posed problem.
Terrain characteristics, such as relief, slopes, depressions,
and obstructions, as well as natural light and overlapping
textures, increase the challenge a bit more. Thus, the scope of
practical applications is defined by making some assumptions
to simplify the problem, i.e., it is necessary to know what the
vision module is supposed to do and what it is not [1].

In urban areas, typical properties of roads or highways
can be considered to model a suitable solution. For example,
Soquet et al. [2] proposed an approach to find a path in
the free space of urban roads by estimating the geometric
content of the road scenes. Cubber et al. [3] used a similar
approach to distinguish traversable from non-traversable areas.
In other studies, the segmentation of road regions was made
considering the shape of the roads on which line segments and
local orientations were used to estimate vanishing points [4],
[5].

In rural environments, the detection of road regions is also
a difficult or even more complicated task due to the absence
of common properties such as those found on urban roads

[6]. The properties of these roads can change along the way,
making it difficult to design a model capable of handling
different scenarios. Besides, terrain irregularities, unclear road
boundaries, and different surrounding obstacles as vegetation,
rocks, and trees, may appear in different formats which are
hard to predict.

However, solutions are being developed, primarily to com-
ply with agricultural demands. Mendes et al. [7] developed
a vision-based detector to carry-out crop monitoring tasks in
steep slope vineyards. Cabo et al. [8] proposed an automatic
dendrometry method to estimate the diameter of trees using
laser scanning. Liu et al. [9] dealt with the detection of
citrus fruits and tree trunks in the context of intelligent fruit-
harvesting.

In these cases, the detection of potential obstacles and the
estimation of the free space are also important for autonomous
driving. The problem is that in such cases there are no friendly
road properties, or even roads may not exist. In this way, these
proposals often deal with the collection of key features and
the development of training models, thus being treated as a
machine learning problem.

Considering that the terrain delineation of outdoor en-
vironments is a relevant task of the auto-determination of
traversable areas, we present in this paper a segmentation
method that is responsible for the detection of ground and non-
ground points of complex scenes under different exposures to
illumination, textures, and shading.

The major contributions of this paper can be summarized
as follows:
• It provides a trunk detection method.
• It provides a safe path design based on ground segmen-

tation.
• It uses the Signal Detection Theory (SDT) to measure the

signal distributions of ground and non-ground.
The paper is organized as follows. The following section,

Section II presents related work. Section III, introduces the
proposed methods with details of its implementation. This is
followed by the methodology, dataset description, and testing
measures used for evaluation in Section IV. This leads onto a
discussion of the experimental results, which is then finalized
by a conclusion and future work in Section V.

II. RELATED WORK

Ali et al. [10] used a fusion of color and texture to
segment images into tree trunks and background objects. They
evaluated methods of classification, feature descriptors, and
prepared a three-step pipeline: training, classification, and
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segmentation. Yildiz [11] followed a similar approach in which
suitable stationary landmarks, i.e. trees, were detected and
extracted using training and classification models. In both
studies, the authors selected samples of objects from training
images and labeled them manually as tree or non-tree.

In a different manner, Mendes et al. [7] used a key-point
extractor based on the Sobel operator to define a descriptor in
the region around each detected feature. Othmani et al. [12]
used a morphological segmentation algorithm to extract the
bark of tree trunks to feed a classifier. Likewise, Kim et al.
[13] developed a self-supervised learning framework which
aimed to improve the traversability estimation capabilities in
unknown terrain.

Other studies dealt with the tree detection task without using
learning algorithms. Shao et al. [14] presented a method of
recognizing tree trunks based on Hough transform for the
detecting vertical edges. Lu and Rasmussen [15] proposed a
contrast-based method for detecting trees in which bar filters
were modeled to emphasize the opposite contrast between
trunks and the background. These two works are the closest to
our method. The first one uses morphological operators and a
segmentation approach that is based on thresholds. The second
one assumes that trunks are nearly vertical with high contrast
on both sides. In contrast to these two works, our method is
prepared to detect more than one trunk per image and to align
the tree bottoms without camera calibration.

III. PROPOSED METHOD

It first searches for points that contrast with the background
and then the initial information on areas that are not terrain
are provided; thus, it is used to label non-ground areas and
the remaining points are marked as ground areas. Thereby, we
look at points that differ from regions of ground and, based
on this detection we segment the ground by induction.

The proposed method takes an image, I , in the RGB color
space as input in such a way that the channel green is used
to appraise the pixels in respect to their contrast differences.
In this channel, the contrast between dark areas and the other
components of a scene is more evident and, because of that,
the contrast models may perform better on it than on other
channels.

In our study, we considered complex scenes where tree
trunks are prominent obstacles. The proposal begins with the
detection of trees to thus delineate the ground. The input
image, I , is divided into small pieces and each of them goes
through contrast models that distinguish objects based on their
color and brightness. In the tests, the size of the slices was
defined as 20 rows × d columns, where d was the width of I .

Considering that natural light produces a relevant contrast
between the background and foreground of a scene, we used
the kernel function proposed by [15] to create models that
extract vertical features of trees. Eq. 1 reproduces this contrast
model function.

x′ = y sin(θ), y′ = y cos(θ)

B(x, y) = exp(−0.5 ∗ (x
′2

sx
+
y′2

sy
)) cos(2πfx′), (1)

where sx and sy are half width and height of the kernel,
x ∈ [−sx, sx], y ∈ [−sy, sy]. The frequency and orientation
of the model filter are set to be f = 1/(2 ∗ sx) and θ = 90◦,
respectively.

These models are convolved with the input image I , F =
(B ∗ I), to produce curves of contrasting areas. Each model
filter produces its own curve through the summed-up value of
each column of F , Eq. 2.

curve(1, j) =
n∑

j=1

m∑
i=1

F (i, j) (2)

curve is a vector containing the sum of the values of all rows
i of each column j of the F , n is the number of columns and
m is the number of rows of F .

The valleys of the curves indicate dark areas that contrast
with a bright background. The width of these valleys is
measured and based on them some bounding boxes, or patches,
are placed in the slice of the image I to select only those
areas. Besides, a threshold, 0 < α ≤ 1, is applied to accept
only valleys at a specific depth. If the α is set to a higher
value, then it accepts more curves. In the tests, α was set with
values 0, 1, 0.3, 0.4, or 0.6.

As the best model filter B is unknown, it is necessary
to explore different filter sizes. Consequently, each one of
them forms their own bounding boxes and to select the most
appropriate for an area we used the Greedy Non-Maximum
Suppression (GreedyNMS) [16]. In the tests, we used models
with size 8, 14, 22, 44.

To reduce the influence of brighter points inside the patches,
a local evaluation is applied to discard these points. These
patches are converted to the HSV (Hue, Saturation, Value)
color space and the channel value v is used to detect points
with high values, (Eq. 3).

v =
1

n

n∑
i=1

vi σ =

√√√√ 1

n− 1

n∑
i=1

(vi − v)2 (3)

where n is the number of pixels in a patch and i is the index
of each one of them. Hence, v passes through a threshold
evaluation such that

V (i) =

{
1 if vi < (v + 3σ),

0 otherwise
(4)

Eq. 4 is a logical binarization that is based on a condition
which detect points further from the mean, v, in 3 times the
standard deviation, σ. Bright points inside a patch are labeled
with 0 and other points are labeled with 1. Based on this result,
points that were labeled with 0 are removed from the original
patch (RGB image), and the others are maintained. After these
steps, a partial segmented image, Is, is obtained.
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Next, we calculate the average value for each segmented
region in Is. Points which are larger than the mean value, as
well as points which are not connected with the top of the
image, are discarded, thus the remaining regions go through
some morphological operations to close small holes and then
they are used to define the bounding boxes around the trees.
Based on these steps, the points inside the bounding boxes in
I are parts of the detected trees, and we can conjecture that
the ground is the other points of I , i.e., the points which are
outside the bounding boxes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We prepared a dataset to evaluate the proposed method,
20 images were taken from outdoor environments in areas
with the presence of trees. The camera was positioned near
the ground to simulate a robot that was "walking" through
the forest, and also, some photos were obtained from the
Internet to evaluate the generalization of the proposed method.
This dataset was manually segmented to produce ground truth
images; then the results could be compared with the reference
images in the dataset, which is available on-line1.

Fig. 1 shows a sample of the dataset. The first line displays
the original image and the second line displays its respective
segmented image (in binary format). The third line shows the
tree regions, and the fourth line presents the ground area.

Fig. 1: A sample of the dataset. From top-down: the input image I;
followed by its respective segmented image; the tree regions; and the
ground area.

That binary image was used to measure the amount of
data that was correctly identified concerning tree and ground
segmentation. Thus, the problem of calculating hits and fails of
the proposed method could be treated as collections of objects.
Firstly, we computed the number of trees in each scene; and
after that, a binary classification test was performed in which
the samples were labeled as ground or non-ground.

The proposed method detected 113 trees out of a total of
133 in the dataset (as shown in Table I). It means that 84.96%
of possible tree regions were detected. We looked at these
results and we noted that only 7 trees were wrongly labeled
as trees, which shows that 93.80% of the results were correctly

1The dataset is available on https://github.com/vicom-ifgo-
urutai/datasets/blob/master/dataset_002.rar

applied. The errors arose due to shadows or non-tree objects
that created dark artifacts in the scenes, and some trees were
not detected due to the influence of light in the tree trunk or
because they were away from the camera.

TABLE I: Tree detection.
Number of Trees

in the dataset Detected trees Hits Failures

133 113 106 7

The classification assigned as correct or incorrect was
defined as:
• True Positive Rate (TPR): the rate of ground pixels

correctly identified as ground,
• True Negative Rate (TNR): the rate of non-ground pixels

correctly identified as non-ground,
• False Positive Rate (FPR): the rate of non-ground pixels

incorrectly identified as ground,
• False Negative Rate (FNR): the rate of ground pixels

incorrectly identified as non-ground,

TABLE II: Confusion Matrix.
Actual

Ground Non-Ground

Pr
ed

ic
te

d Ground 92 23
Non-Ground 7 76

Table II presents the results obtained when these two
classes are considered in each statistical rate. TPR achieved an
assertiveness result equal to 92% and TNR reported 76% in the
detection of non-ground points. FPR presented a considerable
number of false positives, 23%, and the FNR reported few
errors in data classification, only 7%.

Based on these statistical measures, we referred to Signal
Detection Theory (SDT) to calculate d′ and its correlated
metrics. d′ is useful to measure how the signal distributions
are distinguishable, in our case, the signals: ground and non-
ground. Values larger than 0 for d′ indicate a greater ability
to distinguish both signals [17]. In addition, we calculated
Ad′ and A′ to estimate the receiver operating characteristic
(ROC) area; β and c to measure the response bias; and β′′, a
nonparametric measure of response bias.

Table III presents the SDT measures. The function φ−1

converts probabilities, TPR and FNR, into z scores. d′ shows
that the distance between the means is more than twice as large
as the standard deviations of the two distributions. Ad′ and A′

with results close to 1 indicate an impressive performance. The
other metrics, β = 1, c ≈ 0, and β′′ ≈ 0, show that neither
response was favored.

TABLE III: SDT Measures.
φ−1(TPR) φ−1(FNR) d′ Ad′ A′ β c β′′

1.48 −1.48 2.96 0.98 0.96 1.00 ≈ 0.00 ≈ 0.00

We also calculated the overlap score between the detected
ground regions and the ground truth, overlap(A,B) = n(A∩
B)2/(n(A)n(B)), [15]. Considering the average of the dataset
the overlap was 0.84 which is a fine result.
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Table IV presents the results of the proposed method by tak-
ing into account some quality measures: Structural Similarity
Index (SSIM), Complex-Wavelet Structural SIMilarity (CW-
SSIM), Normalized Cross-Correlation (NCC), and Peak Signal
to Noise Ratio (PSNR). The results show that the proposed
method can effectively maintain the structure of the image by
adding only a few noises in the segmented ground.

TABLE IV: Quality Measures.
SSIM CW-SSIM NCC PSNR
0.77 0.80 0.93 18.6

Fig. 2 shows the visual results of the proposed method.
The input images are presented in the first column. In the
second column, the detected trees (which are shown in red
boxes), as well as the undetected trees (in blue bounding
boxes), are displayed. Finally, the third column shows the
segmented ground area. Looking at the outputs, we can notice
that the ground is highly preserved and tree trunks have
been substantially removed to keep only the ground points.
Therefore, this method can be used as an unsupervised method
to select features and also to define safe paths.

(a) (b) (c)

Fig. 2: Results from the proposed method. The input images I are
shown in column (a). The segments of trees and ground are shown in
columns (b) and (c). Besides, column (c) shows the detected ground
areas (green), the false positive (red), and false negative (yellow).

V. CONCLUSION AND FUTURE WORK

Ground detection is a critical task in mobile robotics, as
well as the detection of salient obstacles, such as trees. In
this study, we proposed a method to identify tree trunks
and detach them from the ground using contrast templates,
statistical measures, and morphological operator. We applied
this proposed method in outdoor scenes which are often
complex due to illumination issues as photometric distortion
and noise. Experiments showed satisfactory results in which
trees were well detected and the ground was segmented with

robustness to present safe paths of navigation. In addition,
we referred to Signal Detection Theory to discriminate and
interpret the classification probabilities. As a next step, we
want to use this segmentation method to extract features from
outdoor images and use them in machine learning algorithms
to increase the robustness of the proposal.
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