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Abstract—In this work, we propose a disparity refinement
method to be applied in stereo matching algorithms. It consists
of a segmentation process, statistical analysis of grouping areas
and a support weighted function to find unknown disparities. We
investigate the behavior of this method by comparing it with other
post-processing techniques, as the left to right consistency-check.
By comparing some of the most common refinement techniques,
the experimental results show that or method achieved the
lowest erros in non-weighted functions. Furthermore, through
a qualitative evaluation, it is possible to note that our method
reaches significant results, close to the ground truth maps.

Keywords: stereo vision, image segmentation, adaptive support
window, disparity map, map enhancement.

I. INTRODUCTION

A disparity map is a key component of a stereo vision
system. It stores the differences between similar points, or
pixels, from two or more images. Thus, in each point of a
disparity map there is a value that represents the displacement
of a point in a considered scene. In this field, the binocular
approach is a common procedure. The idea is to simulate the
human vision by using only two images. In most cases, these
images are acquired through a stereo camera.

To perform a stereo algorithm, both images are labeled. One
of them is the reference image and the other is the target
image. The disparity map is built according to the reference
image and the target image is used to find matching points
among them. Thereby, it is possible to calculate the disparities.

In addition, the dissimilarities between points are evaluated
by using cost functions. These functions hold a mathematical
model that defines a way to compare points. For instance, the
Sum of Absolute Differences (SAD) receives two values (or
points) and performs the difference between them.

Most stereo vision methods follow the taxonomy proposed
by [1]. It consists of four steps which defines a pipeline. The
first step was defined as matching cost. The second is known
as cost aggregation. The third is the disparity selection and
the last is the disparity refinement step.
In this work, we propose a method to be applied in the

fourth step from that pipeline. We explain the proposed ap-
proach and we prepare test cases to evaluate the methodology.
Besides that, we compare it with other refinement techniques
as left to right consistency-check. Experiments show that this
technique is comparable with other post-processing strategies,
in most cases with better results.

The outline of the paper is as follows. In Section II, we first
discuss related work. In Section III, we present our algorithm

for adjusting a disparity map. Finally, we present experimental
results and conclusions in Section IV and V, respectively.

II. RELATED WORK

Left to right consistency-check is a frequent refinement
process that is applied in a raw disparity map. It consists of
cross checking two or more disparity maps. For instance, to
apply this methodology in a binocular approach, two disparity
maps must be yielded, so each one of the image pair is used
as a reference image, one at a time.

This consistency-check method deals with areas that are
occluded. Points that are not visible may be detected and
labeled as unknown disparities. After that, another technique
can be used to fill in these occluded pixels. This method
can improve a raw map by observing neighboring points.
Therefore, if a disparity of a point is unknown, probably the
neighboring points may tell what is.

Rhemann et al. [2] explains this method. When an occluded
pixel is detected, it is assigned to the lowest disparity value of
the spatially closest non-occluded pixels which lie on the same
scanline (pixel row). However, they point out that this simple
occlusion filling strategy can generate streak-like artifacts in
the disparity map. Thus to remove them, while preserving the
object boundaries, a weighted median filter can be applied to
the filled pixels.

Hosni et al. [3] used this method with a simple modification.
They observed that since occlusion occurs in the background
of an image, the occluded pixel can be assigned to the
minimum value from both disparity maps. According to them,
this strategy also generates horizontal streaks in the disparity
map and hence it demands post-processing on the filled in
pixels.

This disparity map combination was also used by [4]. To
improve the accuracy of their results, they calculated a depth
image for both stereo images and combined them to eliminate
some final artifacts. They assumed that artifact faults only
occur in one of the two views, so they took the minimum
of both disparity maps.

Apart from that method, other methodologies can be found.
One of them was proposed by Mattocia el at. [5]. It is a
powerful method that uses adaptive weights for classifying
pixels based on geometric and photometric constraints. It takes
a pair of images and a raw disparity map as input, then
the plausibility of each point is evaluated by considering the
relation among points in the same aggregating window, points
between images and the original disparity.
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In this brief section, some strategies of disparity enhance-
ment were pointed out. It doesn’t exclude other methodologies
but it shows that the most discussed method in this literature
is the left to right consistency-check. This is most likely due
to its simplicity for implementing and ability to find occluded
points with efficiency.

III. PROPOSED APPROACH

We start by analysing a raw disparity map. Fig. 1 shows a
map that is very noisy in some parts of it. It was made by a
simple cost aggregating (CA) methodology that can be called
as fixed window (FW) method. It is the simplest CA strategy
that uses an aggregating window and it is at the foundation
of stereo vision systems. Besides, this map was also yielded
by using a simple cost function that is the sum of absolute
differences (SAD).

(a) (b)

Fig. 1: Disparity maps: (a) a raw map and (b) a ground truth
map.

Fig. 1a illustrates a region that has a group of wrong
disparities. Similar pixels coexist in this area and because of
that, FW method fails in a lot of points. However, when we
analyse these disparities we can see that most of the values
are pointing to a correct one. Fig. 2 shows an histogram plot
which confirms our analyse by comparing this map region with
the same region in the reference map (ground truth), Fig. 1b.

(a) (b)

Fig. 2: Map analysis: (a) disparity map regions and (b) related
histograms.

In this way, if in a certain region a disparity method hits
more than fails, we can use it. Unfortunately, it is something
that we don’t know because the correct disparity is still
unknown. But if we believe in it, we can propagate this
supposed correct value even knowing that this is not true all
the time. Our methodology starts with this belief.

To identify a region, a segmentation technique may be used.
In stereo vision systems, mean shift algorithm [6] is widely
employed. It was used to obtain great results in [4], [7] and
[8]. We use it to apply a segmentation in the reference image.
When we obtain these segments we use them to localize
regions in the disparity map. Fig. 3 shows a segmented image

(a) (b)

Fig. 3: Image segmentation: (a) reference image and (b)
disparity map.

and its corresponding disparity map labeled based on these
segments.
After that, the method calculates the most common value

for each segment. It is a simple equation that is show in Eq.
1. For each segment S with the identifier i into the disparity
map D, (Si ⊂ D), it calculates the mode of all n segments
and the results are stored in m.

mi = mode common value in Sn
i=1 (1)

Moreover, each point of the disparity map that belongs a
certain segment is evaluated, accordingly with the previous
mode contability. In Eq. 2, a disparity value in D with the
coordinates (x, y) is tested. In case of this value is in a range
test, the mode value m is assigned for this point. Otherwise, it
is assigned with 0 that represents a unknown disparity. In this
equation, t is a threshould defined by a user that is used to
approximate disparity values to the segment’s mode. Besides,
it considers that each disparity value is in a segment S with
the identifier i.

D(x, y) =

{
mi if D(x, y)∈{Si} ∈ [mi − t,mi + t],

0 otherwise
(2)

When applying the above equations, a disparity map is
returned. At this time, disparities that are far away from their
segment mode value are considered as unknown. The next
step consists of filling these holes in, so a weighted filter is
prepared to evaluate the plausibility of each possible disparity.
Yoon and Kweon [9] introduced a support weighted win-

dow to be applied in the stereo matching problem. Their
methodology considers the color similarity between points
and their space distance. A window is defined and a point
located in the middle of this window is the principal point. The
surrounding neighbors are compared with the principal point
by calculating their difference of colors and their geometric
distance. This strategy was used in [5], [10], [11] among others
and investigated in [3].
The color proximity constraint between a principal point p

and its neighbor point n within a support is given by:

fc(Δcpn) = e−
Δcpn

γc (3)

The color distance Δcpn represents the Euclidean distance
between the colors of p and n in an image I as

Δcpn =

√ ∑
j∈r,g,b

(Ij(p)− Ij(n))2 (4)
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In the same way, spatial proximity constraint is evaluated
accordingly to:

fs(Δspn) = e−
Δspn

γs (5)

the spatial distance Δspn represents the Euclidean distance
between the coordinates (x, y) of p and n as

Δspn =
√
(px − nx)2 + (py − ny)2 (6)

γc and γs refer to a constant of color similarity and
a constant to adjust the spatial distance term, respectively.
fc(Δcpn) and fs(Δspn) represent the strength of grouping
by color similarity and by proximity.

Color and spatial constraints are combined and the final
support weighted window is given by

W (p, n) = e−(
Δcpn

γc +
Δspn

γs ) (7)

In our method, we use the support weighted window with
an adaptation. It is only applied in unknown disparities so a
principal point in a window is a point of disparity that we
want to discovery. Each neighboring pixel that has a disparity
value is evaluated according to the previous equations. Thus,
the weights of each pixel that are in the same disparity are
accumulated. Fig. 4 helps in the explanation.

Fig. 4: Points in a disparity map D have their own weight w.
Each segment is painted didactically (in red, green and blue).
Weights in D1, D2 and D3 are summed separately. The best
value is used to set the disparity in the principal point p.

Based on the color reference image, the photometric and
geometric constraints are calculated and each point of the
window has a weight w. Besides the weights, we know some
disparities. In Fig. 4, each color represents a known disparity,
except for a white color point that represents an unknown
disparity and because of that these points don’t have a weight
w. Thus, the computed weights that are in the same disparity
are summed up as in

Ωd∈{dmin,dmax} =
n∑

j=1

wij (8)

where dmin and dmax are the range from minimum to
maximum disparity and Ω is the accumulated sums. Hence, a
disparity optimization is performed to select the best disparity.
It is given by

D(x,y) = argmax(Ω) (9)

where (x, y) are the coordinates of the unknown disparity
in the disparity map D. Based on the best value from Ω, its
disparity value is assigned to D.

Our method is inspired by considering a raw disparity map
which has noisy parts. In this work, we investigate the behavior
of this method by comparing it with other post-processing
techniques. Details are shown in the next section.

IV. EXPERIMENTAL RESULTS

In this section, the results and the organization of the
experiment are presented. Four image pairs were selected from
the Middlebury dataset [12]. Each pair has its own ground truth
that was used to evaluate the results.
We use the Root Mean Squared Error (RMSE) as a quan-

titative way to estimate the quality of the computed post-
processing techniques. It computes the error between a com-
puted disparity map dC(x, y) and its respective ground truth
map dT (x, y), as given by

R = (
1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|2) 1
2 (10)

where N is the total number of pixels.
In the test case, 10 stereo vision methods were imple-

mented. Thus, raw disparity maps from Fixed Window (FW),
Shiftable Window (SW), Maximum Likelihood (MLMH),
Large Occlusion (LC), Variable Window (VW), Bilateral
support weights (BL and BLNoSpatial), Multi-resolution and
Perceptual Grouping (MRPG), Guided filter support weights
(GF) and Segmentation-based (SB), are used as input for the
test.
Furthermore, the methods discussed in Section II were

also implemented. The left to right consistency-check with
minimum horizontal neighbors, with median filter and with
minimum disparities (CCMin, CCMedian and CCMinDisps,
respectively), and the locally consistent method (LC). In the
case of our method, it is referred to as segment consistency-
check (SCC).
We used the SAD cost as a measure of stereo matching and

a 39× 39 support window for weighted functions. The color
and spatial terms were set as γc = 23 and γs = 14 and these
values were also set in SCC method. For the threshould in Eq.
2, it was set as t = 1. Other parameters were set as they were
shown in their original reference.
For each combination (stereo method plus a post-processing

technique) was calculated the RMSE. We used four image
pairs (Tsukuba, Venus, Teddy and Cones), hence the average
error between them was also calculated. Table I shows these
results with the lowest errors in boldface.
We note that SCC method achieved important results, espe-

cially in non-weighted stereo methods. Thus, in the first five
methods (from row 1 to 5) the error was decreased substan-
tially in comparison to maps without the post-processing step
(Raw column). However, the average errors were increased in
the last five methods while CCMedian and CCMin obtained
an improvement after their application in these weighted
functions.
Fig. 5 shows some raw disparity maps from SW, LO, BL

and MRPG methods. Besides, it shows their improvements
made by CCMedian, LC and SCC methods. Through a qualita-
tive evaluation, it is possible to note that SCC method reaches
significant results, close to the ground truth maps.

2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:12:52 UTC from IEEE Xplore.  Restrictions apply. 



SW

LO

BL

MRPG
(a) (b) (c) (d) (e)

Fig. 5: Experimental results, (from top-down, Tsukuba with SW method, Venus with LO method, Teddy with BL method and
Cones with MRPG method). Raw disparity maps in (a). CCMedian, LC and SCC outputs in (b), (c) and (d), respectively.
Ground truth maps in (e).

TABLE I: Accuracy evaluation.

Raw CCMin CCMedian CCMinDisps LC SCC
FW [-] 8.15 6.51 5.57 8.15 7.44 6.79
SW [1] 8.37 8.86 8.53 8.65 7.81 7.42

MLMH [13] 14.74 10.20 10.07 15.29 12.77 5.00
LO [14] 6.94 9.26 9.21 8.56 7.01 6.64
VW [15] 8.33 7.13 6.45 8.46 7.69 7.27
BL [9] 7.20 4.36 4.10 7.17 7.39 7.39

BLNoSpatial [3] 7.21 4.38 4.12 7.21 7.46 7.36
MRPG [11] 6.39 4.19 3.87 6.51 6.78 6.47

GF [2] 7.62 4.66 4.33 7.55 7.56 7.61
SB [4] 7.30 4.15 3.89 7.24 7.47 7.38

V. CONCLUSION AND FUTURE WORK

The proposed method is an effective post-processing tech-
nique. It improves disparity maps by using a segmentation
process, statistical analysis of grouping areas and through a
support weighted window to find unknown disparities.
By comparing the most common post-processing tech-

niques, the experimental results showed that SSC method
achieved some of the lowest errors in non-weighted functions.
In the next study, we want to incorporate the left to right
consistency-check in our method and to prepare a new evalu-
ation.
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