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Abstract—The challenge in building disparity maps is to
determine the best method to calculate consistency among points
and use it to approximate the differences between the views.
Fortunately, the number of methods to construct disparity maps
have increased in the last years. On the other hand, a lot of
work needs to be done to evaluate these methods by using
different arguments. Besides, it is not clear enough how to build
stereo vision algorithms with concepts as reuse and scalability.
Thus, we propose a software design architecture to be applied
in stereo vision systems. Furthermore, we have implemented
disparity methods to perform an evaluation which objective
was to determine what cost function better fits in each method
analyzed. We conclude that MLMH method with SSD cost
function is a good choice to be applied in the scenes we have
selected, according to the statistical analysis performed.

Index Terms—stereo vision; software design; disparity meth-
ods; disparity costs.

I. INTRODUCTION

Computer vision uses different techniques to give a com-

puter the capability to see the world. To reach this objective

mathematical models are proposed to represent the way we

see and understand things around us. A specific field of

study examines this problem by the use of camera sensors.

Usually, a stereo rig is prefered to simulate the human vision.

This area is known as stereo vision and it generally uses

two bidimensional images to reconstruct the depth coordinate.

When this approach is used it is called binocular vision, a kind

of specialization from stereo vision.

However, other methodologies use more than two images

to achieve the objetive to estimate 3D points. Techniques like

these use a multiview or n-view approach and they consider

multiple images from a scene to approximate from what we

see.

These two types of stereo vision approaches have common

processes. They perform a series of steps which are often

started with camera calibration, passing througth rectification

images, stereo correspondence, triangulation and among oth-

ers. One of them is very important and it has been investigated

by many researchers, which is the disparity calculation.

The disparity term was first introduced in the literature about

human vision than in computer science. It was used to describe

the diference between features captured by both eyes [1]. In

computer vision it is often treated as inverse depth and it means

that if two correspoding points (one in each image) has a big

disparity between them, then the depth point will be small

(closer to the camera), similarly, a small disparity will give a

big depth (i.e., a point will be further away from the camera).

The disparity calculation allows us to construct a map which

contains the difference between corresponding points. This

disparity map, as it is known, shows the disparity for all

points which have been considered. Thus, dense disparity

corresponding points can be calculate and it can be plotted

as an image map. The challenge is to determine the best

method to calculate consistency among points and use it to

approximate the differences between the views shown in the

two, or more, images.

In disparity map processing, the number of calculations

increases according to the number of pixels per image. This

phenomenon causes the matching problem to be computa-

tionally expensive. To reduce this complexity, otimization

techniques like integral images (or summed area table) and

box-filters (or moving average) are used to make this process

a reasonable time consumption [2]. These techniques are

important especially in a correlation matching computation,

or area-based matching costs.

Parallel processing is another way to deal with the disparity

computational complexity. Improvements in hardware technol-

ogy have made important advances in the stereo vision field.

Thus, real time applications have become more common such

as autonomous driving, autonomous robotic navigation and

more interactive 3D games. Because of these improvements,

the implementation of disparity maps in hardware has grown

substantially in recent years [3] [4].

In addition to it, the number of methods to construct dispar-

ity maps increases because of the emergence of frameworks

to evaluate stereo algorithms, such as the Middlebury platform

[1] which has become a standard benchmark for performance

evaluation and comparison to other algorithms. Probably, this

platform is one of the most famous web frameworks that pro-

vides stereo imagery with ground truth, evaluation software,

and a rank which shows the most effective algorithms.

We use Middlebury’s dataset to reach our objective which

is to evaluate disparity methods by using different types of

cost functions. We start by selecting methods to be applied

and we are concerned with preparing a software design with

an architecture prepared to grow, that is scalable.

In previous work, [5], we made a literature review about the

approaches, applications and challenges in the construction of

depth maps. We revisited these papers but at this time we are
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interested in methods to construct disparity maps. Considering

how the quantity of methods is surprisingly high, we have

defined a strategy to select them based on a cross reference

technique. The idea was to select those papers which provided

important observations and somehow have influenced new

trends in different papers. Furthermore, we have considered

techniques that have been implemented only on a standard

CPU, without any other additional processing hardware, and

those which use only two images.

The outline of the paper is as follows. In Section II, we first

discuss the related works and present techniques they used

to construct disparity maps. In Section III, we discuss our

architecture software design and present its potential to be

enlarged to accommodate a growing amount of work. Finally,

we present experimental results and conclusions in Section IV

and V, respectively.

II. RELATED WORK

Most stereo vision disparity map algorithms have been

implemented using multistage techniques [3]. The taxonomy

proposed by Scharstein and Szeliski, [1], is a commonly used

framework for this development. This taxonomy was based on

the observation that stereo algorithms generally perform four

steps: (1) matching cost computation, (2) cost aggregation,

(3) disparity selection and (4) disparity refinement. Moreover,

a pre-processing stage mainly to compensate for photometric

distortions and a post-processing steps to improve the results

are sometimes deployed [2].

Stereo correspondence algorithms have a way of measuring

the similarity of a refecence image and a target one. Similarity

means that pixels that correspond to the same scene point

have similar or ideally the same values in the images [6].

A matching cost algorithm, or photo-consistency measure,

may use a pixel-based or an area-based function to verify the

similarity between images. In the first case, a comparison is

done pixel-to-pixel while in the second a support window is

used to make a correlation process using the neighborhood

of a point fixed in the central position. For both, a common

disparity selection otimization is the Winner Takes All (WTA)

technique.

Typical pixel-based matching cost include absolute intensity

differences (AD) and squared intensity differences (SD). In the

case of area-based, Sum of Absolute Differences (SAD), Sum

of Squared Differences (SSD), Normalized Cross-Correlation

(NCC), Rank Transform (RT), Census Transform (CT), Birch-

field and Tomasi [7] sampling insensitive pixel dissimilarity

(BTSAD and BTSSD), among others, are frequently used.

Area-based algorithms are classified as a local approach.

This is because they consider only local information and

therefore have a low computational complexity and a short

run time [3], as the fixed windows approach. Unfortunately,

they run into problems. If the support window is small it

leads to noisy results, but if it is too large, pixels at different

depths near depth discontinuities lead to overblown foreground

objects, the fattening effect [8]. In spite of their limitations,

area-based algorithms are widely adopted in practice and they

are the most frequently used algorithms for real applications

[2].

On the other hand, the global approach redefines depth esti-

mation as an energy minimization problem which its objective

is to find a disparity function that minimizes global energy. A

global method can be optimized by algorithms such as graph

cuts, belief propagation, cooperative optimization, dynamic

programming or scanline optimization [9] [2]. In contrast,

global methods frequently use the pixel-based approach to

make the disparity map calculation, and so they skip the

aggregation step [1].

A matching cost is computed for all disparities under

consideration. Thus, for each pixel of the reference image we

need to compute the cost between the patch (a rectangular

portion of an image) centered at this reference pixel, and all

the patches of the target image. It is the same for a pixel-based

approach, in this case we can consider a patch as 1×1 support

window.

This understanding reveals that a naive evaluation of the

matching cost for a set of M relative offsets, using square

patches of size r2, takes O(Mr2) operations for each patch

in the reference image. Thus, for an image with N pixels,

the computation of all the matching costs require O(MNr2)
operations [10]. Facciolo et al., [10], have described how the

integral image can be applied to compute the matching costs

with O(MN) operations, regardless of the window size.

Another way to deal with this circumstance is to apply

the box filtering technique. Its main advantage is speeding

computer programs that use support windows by the reuse

of previous computation. In this sense, it is also independent

of the windows size. Moving average is a common filter that

employs this technique, mainly because it is easy to understand

and to use [11].

Veksler [12], in her variable windows algorithm, has used

the integral image to efficiently search the space of windows

to find a useful one. This algorithm works by exploring all

square windows between some minimum and maximum size

for each image row. Thus, it deals with the problem of varying

window size by empirical tests, a common problem in fixed

window algorithms.

Although Veskler has developed a new window cost, her

method requires many user-specified parameters which de-

mands a lot of experimentation. In a different way to deal

with the problem, Gerrits and Bekaert [8] has proposed a

segmentation-based algorithm. It assumes that depth disconti-

nuities occur across color discontinuities and based on that

it uses the mean shift algorithm to segment the reference

image. Then, during the aggregation step, all pixels inside of a

window which are out of a segment are considered as outliers.

This algorithm uses the moving average in its implementation

and like Veskler’s method it has many parameters to deal.

Scharstein and Szeliski, [1], have shown a simple way to

reach important results even with the use of fixed windows.

The shiftable windows technique starts with a simple aggrega-

tion step and it uses this output to take the minimum matching

score across all points in the same neighborhood from a
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centered point. This technique recovers object boundaries quite

accurately but it fails in textureless areas.
Although the area-based approach is quite used, we need to

deal with the problem of selecting the best window size and

shape. It is not easy to deduce because each scene demands

a different window, or each part of a scene could demand a

different one. Thus, it is usually done empirically in both fixed

window and adaptive window methods.
Cox et al., [13], have proposed a method to avoid the adap-

tive windowing problem of area-based correlation methods. In

the maximum likelihood, minimum horizontal (MLMH) stereo

algorithm the total number of horizontal and vertical discon-

tinuties along and between adjacent lines are minimized to

preserve border areas. Bobick and Intille, [14] , have followed

this idea to propose the large occlusion stereo algorithm which

deals with the presence of significant occlusion. Both methods

use the pixel-based approach and the dynamic programming

(DP) to find matches and occlusions simultaneously. Though,

they suffer from the streaking effect.

III. SOFTWARE DESIGN

We propose a software design architecture to be used in

stereo vision computer programs. This architecture is based on

the taxonomy proposed by Scharstein and Szeliski [1] which

contains four steps as shown in Fig. 1. We have used this

taxonomy to build a flexible and modular software structure

that can be extended to aggregate more functions.

Matching
Cost

Cost
Aggregation

Disparity
Optimization

Disparity
Refinement

Fig. 1: A taxonomy for stereo vision systems [1].

In our software design, the input images are obtained from a

passive camera sensor and we have assumed that these images

have passed through a rectification process. Thus, it reduces

the search space to one dimension (along the epipolar lines)

between two images. As shown in Fig. 2, the region of pixels

within a patch in the left image is used to find the closest

matching patch in the right image. The disparity is just the

horizontal distance between the centers of the patches.

(a) Left Image

(b) Right Image

Fig. 2: A search in epipolar lines. The patch in the Left Image

is the origin block and the patch in the Right Image (more

left) is the closest matching block.

The main data structure in this architecture is the Disparity

Space Image (DSI), a 3D matrix which contains the cost of

matching each pixel of the reference and target images. That

is, each element C(x, y, d) of the DSI represents the cost of

the correspondence between Ir(xr, y) and It(xt+d, y). In this

formulation, (x, y, d) represents the disparity map coordinates,

where (x, y) are the coordinates of the pixel of interest and

d is the disparity value. Typically, in the matching process,

Ir is used as the reference image and It represents the target

image.

Fig. 3 shows the construction of a DSI. The target image is

shifted one by one pixel until the max disparity value. Thus,

the disparity cost is stored in a 3D structure and each cost

can be retrived by the coordinates from the DSI (C(x, y, d)).
Considering that the goal of a stereo correspondence algorithm

is to produce a univalued function in disparity space, we can

use the DSI to find the best correspondences. For example,

for each pixel, the corresponding disparity value with the

minimum cost is assigned to that pixel (WTA optimization).

Fig. 3: Disparity Space Image representation.

We propose an architecture with six subsystems: Disparity

Cost, Cost Aggregation, Block Matching, Disparity Selection,

Subpixel Block Matching and Disparity Methods.

• Disparity Cost - is a subsystem that contains the criterions

to measure the similarity between two pixels (or patches),

such as NCC and SSD.

• Cost Aggregation - is used for efficiently performing

Block Matching and its input is the output form Disparity

Cost. Two components can be part of it, the integral
image and box filter techniques can be used to speed up

the aggregation process.

• Block Matching - computes the matching costs between

patches of two images and it considers the minimum and

maximum possible disparities. It uses as input the output

from Cost Aggregation subsystem and its output is the

DSI structure.

• Disparity Selection - is responsible to determine which

discrete set of disparities from DSI best represents the

scene surface. WTA and DP are representatives of this

subsystem and their outputs are the disparity map.

• Subpixel Block Matching - extends the Block Matching

for integer offsets to consider subpixel disparities which

provides an easy way to get better results with little

additional computation. It can be used instead of Block

Matching subsystem.
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• Disparity Methods - can incorporate a variety of pro-

posals that seek to construct disparity maps. Local and

global methods, pixel and area based approaches, can

be easily accommodated to it. Thus, we can reuse the

previous components in a fashionable way and we can

make scalable stereo vision programs.

Fig. 4 shows a component diagram1 which represents the

proposed software design. This design is composed of six in-

dependent and interchangeable modules. The Block Matching
subsystem allows to make patches of different sizes by expos-

ing an interface to be used. The Disparity Methods subsystem
uses the required interface provided by Block Matching or

by Subpixel Block Matching. The Disparity Cost subsystem
exposes an interface which allows to select different types

of costs, such as SAD and SSD. After the disparity cost

calculation we can aggregate the cost by using an interface

provided by the Cost Aggregation subsystem. Finally, the

outputs from the Block Matching and Subpixel Block Matching
subsystems are the DSI, then we can use the interface provided

by Disparity Selection subsystem to construct the dispartity

map.

Fig. 4: Software design components.

IV. EXPERIMENTATION AND RESULTS

We implemented 10 matching costs and 6 methods that use

these costs. We have considered all possible combinations to

analyse how each cost and methods deal with the disparity

calculation. To select them, we performed a literature review

with three constraints: (1) only methods that work on a single

stereo image pair, (2) only methods that work on a standard

CPU and (3) only methods that the running time is reasonable

to be processed, no more than a few seconds.
The literature review gave us some of the widely used stereo

matching costs and important methods that have influenced

different approaches to construct disparity maps. Because of

that, methods that we selected are not new but we used them

to observe their behavior in the scenes we have selected.
We selected four image pairs from Middlebury web site:

Tsukuba, Map, Cones and Teddy, as shown in Fig. 5, re-

spectively. These images are rectified and because of that

1It is a diagram from UML - Unified Modeling Language.

the parallax movement of a point occurs only along a line.

Each image pair has a ground truth which holds the disparities

between the reference and target images. Thus, it can be used

to evaluate the accuracy of stereo vision methods.

Tables I and II show the disparity methods and disparity

cost we have selected, respectively. Methods which have been

discussed in Section II were implemented and details of the

disparity costs we selected can be found in [10]. We used the

software design discussed in Section III to implement them

all.

(a) Left Image (b) Right Image (c) Gr. Truth

Fig. 5: Image pairs with Ground Truth.

TABLE I: Disparity Methods

Disparity
Method

Algorithm
Category

Area/Pixel
Based

Opti-
mization

Author

Fixed Windows (FW) Local Area WTA –
Shiftable Windows (SW) Local Area WTA [1]
Variable Windows (VW) Local Area DP [12]
Segmentation Based (SB) Local Area WTA [8]

MLMH Global Pixel DP [13]
Large Occlusion (LO) Global Pixel DP [14]

TABLE II: Disparity Costs

Initials Description

SAD Sum of Absolute Differences
SSD Sum of Squared Differences
ZSAD Zero-mean SAD
ZSSD Zero-mean SSD

SSDNorm SSD Normalized
NCC Normalized Cross Correlation
AFF Affine Similarity Measure
LIN Variant of the AFF cost

BTSAD Birchfield and Tomasi SAD
BTSSD Birchfield and Tomasi SSD

The experimentation was made in three steps. In the first

step, the images were transformed to grayscale level and the

input arguments were defined. We decided to use the same
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(a) FW + SAD (b) SW + BTSAD (c) VW + BTSAD (d) SB + SAD (e) MLMH + BTSAD (f) LO + BTSAD

(g) FW + NCC (h) SW + BTSSD (i) VW + BTSAD (j) SB + BTSAD (k) MLMH + SSD (l) LO + BTSAD

(m) FW + NCC (n) SW + ZSSD (o) VW + NCC (p) SB + BTSAD (q) MLMH + BTSAD (r) LO + NCC

(s) FW + NCC (t) SW + AFF (u) VW + NCC (v) SB + BTSSD (w) MLMH + ZSSD (x) LO + LIN

Fig. 6: Stereo vision methods with the lowest RMSE cost function.

arguments which were shown in the original papers when they

were provided. In the second step, we put the programs to run.

Then, the outputs were compared with the ground truths by

measuring the Root Mean Squared Error (RMSE), as shown

in Equation 1. In the third step, we performed a quantitative

evaluation to find the cost function with minimum error to be

applied in a specific method. To do that, we calculated the

average between the RMSE from the four image pairs that we

used. Furthermore, we have executed a statistical technique,

ANOVA (Analysis of Variance), to find a cost function which

best fits in all methods.

RMSE =

√√√√ 1

N

N∑
i=1

(ci − c̄i)2 (1)

In Equation 1, c̄i is the disparity map generated by stereo

vision systems, ci is the ground truth disparity map and N is

the number of pixels in the image.

In order to get results with all cost functions and methods,

we had to define appropriate test cases. Thus, in methods

which are pixel-based we performed the correlation process

by using a 3×3 fixed window. This approach was important to

guarantee that cost functions like NCC and AFF kept working

even in a pixel-based method. Besides that, we have not

applied post-processing steps to improve the results. However,

in MLMH algorithm we performed a nearest interpolation in

the generated disparity maps. It was necessary to complete

holes caused by occlusions, after that we got better results to

be analyzed.

All methods were combined with all cost functions. Thus,

each of the methods were run ten times for each of the four

scenes we used. Considering that we have 6 methods, 10 cost

function and 4 scenes, we made a script that runs 240 times.

Fig. 6 shows stereo vision methods combined with cost

function that returned the lowest RMSE. We can observe that

Fixed Windows with NCC is better to Map, Cones and Teddy,
while SAD is better for Tsukuba. Besides, we can observe that

the cost function most used in MLMH method is the BTSAD

which means it should be a good choice to be applied in this

method.

However, to confirm that, we performed another type of

metric to analyze the cost function with less error that could

be used on the methods that we implemented. Thus, we

performed the average between the results which were brought

by RMSE.

Table III shows these averages and the minimum errors

are in boldface. We can see that NCC cost is the best for

Fixed Windows and BTSAD is the best for Variable Windows

and Segmentation-Based methods, while LIN is the best for

Large Occlusion method. We can also observe that SSD cost

is the best for MLMH instead of BTSAD. In addition, MLMH

method provided the smallest mean error despite of being the

oldest method which we have implemented.

Furthermore, we can observe that cost functions as ZSAD

and SSDNorm at no point gave the smaller error. Because of
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(a) Tsukuba (b) Map (c) Cones (d) Teddy

Fig. 7: Subpixel Block Matching for MLMH + SSD.

that, in an analytical sense, we can observe that these costs

are not appropriate for scenes we have used.

TABLE III: Average between RMSE results

FW SW VW SB MLMH LO

SAD 3.2179 3.4870 3.0927 2.7236 3.5440 3.2506

SSD 3.2568 3.4265 3.3501 2.8045 2.4158 3.2841

ZSAD 3.4024 3.4791 4.1127 2.9200 3.0776 3.2518

ZSSD 3.2568 3.4542 3.4532 2.8045 2.7305 3.2842

SSDNorm 3.3117 3.4333 3.0361 2.8996 2.7239 6.6750

NCC 3.0915 3.5272 3.3735 7.3480 2.7368 3.7858

AFF 3.2972 3.4095 3.2721 6.2262 9.0788 3.8233

LIN 3.2974 3.4087 3.2033 2.9188 2.4858 3.1268

BTSAD 3.2001 3.3940 2.9355 2.7096 2.4316 3.2163

BTSSD 3.2209 3.3449 3.1981 2.8171 2.4407 3.2680

We applied ANOVA technique in two approaches. ANOVA

one way was performed to observe what cost function could be

better applied in a specific disparity method. ANOVA two way
was performed to observe what combination between method

and cost function could better fit to the scenes. For both, we

considered a margin of error of 0.01 and because we have

four scenes we considered four repetitions. With the results of

ANOVA, we performed the Tukey’s test to analyze possible

representative groups.

Considering these statistical techniques we made some in-

terpretations. First, the worst cost function to MLMH method

was AFF and a group of costs formed by SSD, LIN, BTSAD

and BTSSD appeared as the best costs for this method. Second,

AFF has appeared over again as the worst cost function, as

well as NCC, but at this time for Segmentation-Based method.

Third, the data were insufficient to get the best combination

that could be applied in all scenes. This interpretation is due to

the fact that the average between methods is almost the same,

so the tests did not efficiently separate groups.

Taking this results into account, we performed again the

MLMH method combined with SSD cost to all scenes. At

this time we considered a subpixel offset, that is, instead of

moving the images one pixel at a time we moved each pixel

1/n, where n was equal to 8. We did not apply either the

nearest interpolation and aggregation process (except for Map
that was applied a 3 × 3 fixed window). The result is shown

in Fig. 7.

V. CONCLUSION

Stereo vision methods can be efficiently implemented with

the use of techniques as integral image and box filters. But it is
not enough to build an scalable architecture. Thus, components

need to be modeled to guarantee reuse and the growing of the

system. Based on a classical taxonomy, we have proposed a

software design to be applied in the development of disparity

maps. Moreover, we selected and implemented methods and

cost functions that is commonly used in stereo vision field.

Considering these implementations and the quantitative

evaluation that we performed, we can conclude that the

MLMH is an important method to be applied in the scenes

which we selected, specialy when it is used in combination

with SSD cost function.
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