
Wrist Player: a smartwatch gesture controller for smart TVs
Mateus M. Luna, Thyago P. Carvalho, Fabrizzio Alphonsus A. M. N. Soares,

Hugo A. D. Nascimento and Ronaldo M. Costa
Universidade Federal de Goiás - Instituto de Informática - Goiânia, Goiás, Brazil, 74690–900
Email: mateus.m.luna@gmail.com,{thyagoperes, fabrizzio, ronaldocosta, hadn}@inf.ufg.br

Abstract—Emerging technology on mobile and wearable mar-
ket, smartwatches have embedded movement sensors whose
potential is yet to be fully explored. This paper proposes an
interaction method with smart TVs via gestures performed by
person’s wrist using a smartwatch. Detailed architecture and
implementation for a complete prototype, named Wrist Player,
is presented. A user study is also conducted, in order to evaluate
the prototype performance and the user’s interest on the proposal.
Results show that the method works very well, with participants
reporting having a good experience with the prototype. We
present our insights on the concept, challenges faced in our
research and ideas for future studies.

Keywords— Gesture Recognition; Human Computer Interac-
tion; Movement Sensors; smart TV; smartwatch; Internet of
Things.

I. INTRODUCTION

Since its creation, in the 1930s, television took a part in
people’s daily time and got many new features to become what
we name today as smart TV. Currently, they can be seen as
media centers connected to the Internet and to other smart
devices. In the past, one had to interact with TV directly by
dials, sliders and push buttons to perform simple operations
such as changing channels or setting up volume. Some years
after, remote control was created in order to perform the
same operations, but keeping the viewers comfortably on their
couches.
Nowadays, smart TVs have embedded new features such

as voice control and camera gesture recognition in order to
provide more interactions, but both features show strengths
and weaknesses. Voice Recognition can free the users from
holding a physical control device. However, using it in a noisy
environment, simultaneously with with other communication
"channels", can be very challenging and frustrating. Gesture
recognition by depth cameras can do a great job mapping ges-
tures performed by the viewer’s body, but still faces limitations
regarding distance, positioning and specially ambient lighting.
Recently, devices such as smartwatches have become pop-

ular, providing to users touch screens, Wifi and Bluetooth®

communication and being able to understand voice and gesture
commands. Just like what happened with the smartphone
evolution, smartwatches are literal “wrist computers”, with
a processing potential comparable to many of our desktops.
For being so well attached to our body, they allow gesture
detection with a good precision for several operations, such as
waking up the screen with a simple twist or visually moving
items on a list by using a common drag-and-drop interaction.
In this paper, we present Wrist Player, our envision on inte-

grating smart consumer devices, making use of communication,
computing and potential interaction between those devices.
Particularly, this work focus on how to interact with smart
TVs via wrist gestures, taking advantage of accelerometers,
available in almost every smartwatch. The interaction concept
can be summarized in Fig.1.

Fig. 1: Tracking wrist gestures with a smartwatch in order to classify
them as regular gestures (push, pull, and move up, down, left or
right), and to map them to actions on a smart TV, such as toggling
play/pause, changing the volume and performing playback control.

The paper is organized as follows: in next section, the related
work is presented. Then, in Section III, we introduce the Wrist
Player interaction method and its prototype in details. A user
study of the system is described in Section IV. Finally, we draw
our conclusion and suggest ideas for future work in Section VI.

II. RELATED WORK

Back in 2001, Rekimoto [1] proposed a concept of wearable
technology called GestureWrist. His prototype consisted of
a 2-axis accelerometer on the top of a watch, and capacitor
sensors on a wristband. The author stands out the need of
having wearable devices less intrusives and more natural to
the user. Few years later, this aspect started receiving more
attention, and have now been subject of several studies.

A. Accelerometer Control
Kela et al. [2] studied gestures recognition using Hidden

Markov Model with a small portable device to interact to smart
environments. Similarly, Liu et al. [3] and Kühnel et al. [4]
conducted studies with smartphones and Nintendo Wii remote
using Dynamic Time Warping (DTW) for gesture recognition.
In their conclusions, it is highlighted that although an initial
gesture set can be useful, users prefer defining their own
gestures.

B. Smartwatches
A prototype for controlling a music player application via

touches and swipes in a wristband, as well as a glove, was built
by Speir et al. [5]. Results show that users have interest on
this kind of interaction, specially swipe gestures on wristband,
instead of touch ones.
McGuckin et al. [6] analysed the interest of 16 subjects

on using gesture control in a message application, both with
smartwaches and smartphones. The users approved mostly
the basic gestures, specially on smartwatches, and proposed

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.266

336

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:25:19 UTC from IEEE Xplore. Restrictions apply.

a combination of tapping and gesture control. Many of the
interactions studied there are becoming standard in Android
Wear devices, as well as the system itself has gestures
recognitions in its most recent versions.
Mace et al. [7] focused on the adoption of smartwatches

for gesture classification and compared implementations of the
Naïve Bayes Classifier and DTW. Mace also suggested some
improvements such as Plane Adjustment and the reduction of
noise caused by gravity acceleration.
Kerber et al. [8] used DTW to compare a set of gestures

with routine movements on smartwatches for obtaining an
appropriate “gesture delimiter”, that would not conflict with
daily actions performed by user’s wrist. Their research enforces
that having this delimiter would avoid the need of two hands for
interactions (Opposite-Side Interaction - OSI). After significant
data collection and analysis, it was defined that a wrist rotate or
double rotate is suitable enough for using as gesture delimiter.
Previously, Ruiz and Li [9] had already proposed a double
flip gesture as delimiter following similar experiments, but for
smartphones.
Another work where trigger gestures are used appears in

Porzi et al. [10], to interact with a smartphone camera activating
identification of objects for visually impaired people. In their
work it was used a Global Alignment Kernel (GAK) and
a Support Vector Machine (SVM) classifier to detect the
proposed set of gestures. Later, in [11], that work was extended
with a transfer learning approach, allowing users to provide
personalized gestures.
Xu et al. [12] used accelerometer and gyroscope from

a special device attached to a wrist band, to prove that a
classification of finger, hands and arm gestures is feasible
on smartwatches. They analysed the magnitude of energy to
classify move source, and then applied machine learning for
classification. A training set was obtained from one person
only, although good results were presented, in a set of 37 test
gestures, including experiments on finger writing.

C. Applications

Sen [13] detected eating events based on smartwatch sensors
to activate a camera in the device for a diet control system.
Few tests were realized and a series of challenges to this
approach were presented, but the author achieves good results
on classifying different types of eating modes and frequency.
Ferrari et al. [14] proposed a soft authentication system using

Bluetooth®, based on the detection of handshakes between pair
parts using smartwatches. Machine Learning Techniques for
classification were compared, but few tests were presented
in terms of the overall proposal. In an different perspective,
Sarkisyan et al. [15] analysed the feasibility of smartwatch
sensor data collection to predict PIN numbers typed on a
smartphone. Even having several optimizations to estimate the
values, the prediction accuracy varied from 41% to 91% on
different data sets.
Waris and Reynolds [16] used Finite State Machines (FSM)

optimized by cultural algorithm techniques to propose a gesture
interaction system with automotive smartdevices, such as
Android Auto, also using an Android Wear. Although it
was proved that cultural algorithm improves FSM structure
over training data and that this algorithm was less resource
consuming than strategies such as DTW, there was no much
validation of the proposed gestures on the context of driving.

We highlight that, in Waris and Reynolds’ work, a twist gesture
is also proposed as a trigger to start data collection.

D. Smart TV
Vatavu et al. [17] offered insights concerning the use of a

Leap Motion to execute tasks on a smart TV. One important
observation made is the user preference for gesture commands
instead of the TV remote control (82% mean preference, in
a set of 21 actions, proposed and validated by 18 volunteers).
Although this study presents many user’s insights on gestures,
most of them use hand and finger gestures, not all feasible on
smartwatches.
Keshav et al. [18] presented a system planned for integration

between smartwatches and smart TVs through gestures. In their
paper, it is pointed out the need of a sensor data processing in
a smartphone that then sends commands to a smart TV, where
a browser application interprets a set of gestures. Although,
this is a very interesting work, neither it has a user study nor
presents how gestures are delimited over time. In addition,
their application for smart TVs employs gestures for actions
not related to the standard media playback, and employs a
specific branded protocol, which make its prototype limited
for the TV hardware being used.

III. WRIST PLAYER

Wrist Player is our prototype to provide user interaction with
smart TVs through wrist gestures tracked by smartwatches.
Thus, six gestures are proposed, as presented in Fig. 1, and
their mapped actions are clarified in TABLE I.

TABLE I: Wrist Gestures and Corresponding Actions

Gesture Action
To move wrist up Increase volume

To move wrist down Decrease volume

To move wrist left Rewind playback

To Move wrist right Forward playback

To push wrist Toggle Play/Pause

To pull wrist Toggle Mute/Unmute

This set of gestures was defined via a brainstorm, with ten
volunteers, basing on works of Kela [2] and Kuhnel [4].
In The following sections, we present the used materials, the

architecture of the prototype and the details of the proposed
interaction method.

A. Materials
For our prototype development, Samsung Gear Live and

Moto 360 1st generation smartwatches were used. The Moto
360 ran Android Wear version 1.4.0 and had embedded
an InvenSense MPU-6051 chip of Six Axis, endowed of
accelerometer and gyroscope. The Gear Live ran Android
Wear 1.5.0 and had an InvenSense MP92M chip of 9 axis, with
accelerometer, gyroscope and magnetometer.
A LG NEXUS 5 smartphone, running Android 6.0.2 was

used and connected to the smartwatches via Bluetooth®.
Android Studio 2.0.0 and the API 23 were employed for the
development.
A smart TV module was simulated using a regular TV

connected to a Chromecast 1st generation via HDMI and
USB ports, for video/audio and power source, respectively.

337

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:25:19 UTC from IEEE Xplore. Restrictions apply.

The Chromecast-smartphone communication happened via wifi
network.
We highlight that, up to Android Wear version 1.5.0, the

smartwatch is limited to communicate only with a paired smart-
phone, even when using Wifi connection. Google promised
to provide full communication stack via Wifi in the Android
Wear 2.0. However, when this paper was written, the new
API was available only for few devices. We also split the
prototype between the smartwatch and the smartphone in order
to distribute processing load and to avoid a fast depletion of
the smartwatch battery.

B. System Architecture

The prototype system for Wrist Player is composed by a
Styled Media Receiver, a Media Controller App and a Wearable
App, as seen in Fig. 2.

Fig. 2: Wrist Player: System Architecture.

The Styled Media Receiver is an application developed by
Google using HTML, Javascript and CSS, that is installed on
Chromecast on demand, when a streaming is requested by a
connected smartphone.
The Media Controller App is a Cast Controller, with a

Gesture Classifier module, integrated to the smartwatch. It is
a fork from Google Sample Media Controller, which provides
basic resources for Chromecast controlling. Once the user
establishes a Chromecast session, the Media Controller App
starts the Wearable App, presenting its home screen (Fig. 3a)
on the smartwatch and giving gesture control ability to the
user.
The Wearable App has a Gesture Collector Module and a

Touch Controller UI. The Gesture Collector Module can operate
in Gesture Controller mode or in Template Recorder mode.
In Gesture Controller (Fig. 3a), the module sends gestures
to the Gesture Classifier module to be translated as action
commands in the smart TV. In Template Recorder (Fig. 3b),
it sends gestures to the same module, but for being stored as
templates. The Touch Controller UI offers buttons related to
the available actions, as an alternative interface, in case the
user does not want to perform gestures (Fig. 3c). The three
screen options are available and accessed via swiping.

(a) (b) (c)

Fig. 3: Screen options: (a) Gesture Controller mode1, (b) Template
Recorder mode, (c) Touch Controller UI.

The app modules are detailed in the following subsections.

C. Gesture Collector Module
The Gesture Collector module is the kernel of the Wearable

App. It is responsible for collecting gestures to be used as
control actions or recorded as templates.
In this approach, every wrist gesture is expressed as a time

series of accelerometer data in the three axis X , Y , and Z.
However, collecting such data continuously leads to many
problems. First, people are constantly performing gestures with
their hands, for instance when talking, walking, and so forth.
Thus, processing a stream of data continuously can imply
in undesired gesture recognition. Second, synchronizing the
beginning of a collected time series with an actual gesture can
be challenging and result in false positive and false negative
gesture recognitions. Finally, it implies in unnecessary load
processing, with excessive energy draining, and fast battery
depletion.
Considering such limitations, we adopt a strategy of execut-

ing the collecting routine only during an empirically determined
time window of 1.2 seconds, after a “trigger” is fired. Such
trigger could be the click of a button, but that would break the
logic of having a full gesture-only experience.
In this work, a wrist tilt gesture is adopted as a trigger,

based on [8] and [9], and it mimics a similar gesture available
in Android Wear since version 1.4. We highlight that the tilt
gesture in Android only supports the scrolling of lists and
notification cards. It is expected, for future versions of Android
Wear, that the developers can program their own actions. For
now, we implemented our own tilt monitor, in order to run the
Wrist Player prototype.

1) Tilt monitor: A tilt gesture consists of flicking the wrist
outward, performing a rotation greater than 90 degrees, and
then turning it back to its initial position. The lower arm must
be parallel to the ground, and preferably pointing towards the
user field of view.

Fig. 4: Tilt gesture sample.

The procedure is demonstrated in Fig. 4. The X axis is
aligned to the forearm and the hand (0°), the Y axis is aligned
to the watchband (90°) and the Z axis is perpendicular to the
watch screen surface (0°). X axis is assumed as revolution axis.
The Watch orientation is obtained based on the accelerometer

data (gravity acceleration). Its X , Y and Z angles are calculated
using Equation 1 [19]:

θa = arccos

(
Ga×

(√
G2x +G2y +G2z

)−1)
(1)

where θ is the watch angle on axis a = {x,y,z} and G is
the gravity acceleration on its respective axis.

1Hands illustration adapted from Android Wear documentation.

338

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:25:19 UTC from IEEE Xplore. Restrictions apply.

In order to detect a tilt gesture, two states are assumed: first,
when the watch face is up (X = 0°, Y = 90°, and Z = 0°);
second, when the watch face is turned around the X axis,
counterclockwise, for left hand or clockwise for right hand
(X = 0°, Y = 180°, and Z = 90°). All axis are analysed together
to enforce the user to put the arm in a predetermined position,
ignoring Y or Z rotations, so avoiding false tilt detection.
A tilt is detected when a transition occurs from the first

to the second state, followed by another transition from the
second to the first state. To avoid stability problems, a tolerance
of ten degrees is defined as a limit for state transitions.

2) Timed Sensor Recorder: Once a tilt is detected, the
smartwatch vibrates and shows a screen image (Fig. 5a) as a
feedback to the user. Then it starts a Timed Sensor Recorder.
This procedure gathers accelerometer data for a predetermined
period, which value was empirically defined in order to record
a gesture. During that time window, the trigger detection is
suspended. As recommended by Google in the Android Wear
documentation, for user interaction, the sensor rate used was the
SENSOR_DELAY_UI, which corresponds to ≈ 15 reads/sec.

(a) (b) (c)

Fig. 5: Screens samples: (a) Gesture collecting ongoing, (b) Idle
detected feedback and (c) Recognized gesture feedback.

After the timer is lapsed, for avoiding useless processing, the
collected data is analysed to identify whether it corresponds to
a gesture or to an idle state. An idle state happens when the
standard deviation of the time-window data is bellow a certain
threshold. For this aim, the accelerometer data is evaluated for
each axis (X , Y or Z) individually. In our experiments with
different users, better results were empirically achieved with
a threshold value of 1.5 for Samsung Gear Live and 2.5 for
Moto 360.
Finally, if the collected data corresponds to a gesture, then

it is sent to the smartphone to be processed by the Gesture
Classifier module. Otherwise, a feedback image (Fig. 5b) is
presented on the watch screen for 3 seconds, notifying an idle
state to user, and no data is sent to the smartphone.

D. Gesture Classifier Module

The Gesture Classifier module is a smartphone service that
receives the collected data from the smartwatch, classifies
it with a Multi-Dimensional Dynamic Time Warping (MD-
DTW) algorithm as one of the recorded template gestures and
performs an action. Thus, when a gesture is recognized, a
control operation is sent to the smart TV (or the Chromecast),
and a feedback screen image (as in Fig. 5c) is presented for
3 seconds on the smartwatch. Completing this routine, the
module returns to awaiting a new gesture state from the Gesture
Collector.
The MD-DTW is a variation of the DTW, proposed by Holt

et al. [20]. It aligns two temporal multidimensional sequences

with different sizes. In our proposal, we compare the sensor
data sequence with templates recorded before the test sessions.

Firstly, the algorithm calculates a distance matrix (Eq. 2)
between each of the multidimensional temporal series.

di, j =

√√√√ |K|
∑
k=x

(Ui,k−Tj,k))2 (2)

where U and T are time series of peformed user gesture
and the template gesture, respectively. K is the set of axis (X ,
Y , and Z), and i and j are instant positions in the time series,
with length N and M, respectively.
Secondly, the algorithm builds an accumulated distance

matrix as shown in Equation 3.

Di, j = di, j +min{Di−1, j,Di, j−1,Di−1, j−1} (3)

where Di, j is the accumulated distance value in line i and
column j, given by the distance value di, j, explained on Eq.
2, added to the smallest value of the three neighbor positions,
preceding the referred position.

Finally, we get the accumulated distance stored in the
last matrix element, DN,M . These steps are performed for all
stored gestures, and the least accumulated distance is used for
classifying the gesture. We highlight that it is not necessary to
hold the path for the alignment, since we only use the minimum
accumulated distance value.

IV. USER STUDY

In order to evaluate our prototype in a scenario of TV
controlled by smartwatches via gestures, experiments were
performed. Experiment variables, such as gesture accelerometer
data, time stampings, classifier setups, resulting control actions
and so forth, were collected and stored on a database for
analysis.

A. Apparatus

For the user study, a Samsung Gear Live smartwatch,
running Android Wear 1.5.0, was used together with a LG
NEXUS 5 smartphone, running Android 6.0.2. A Chromecast
1st generation was connected via HDMI and USB ports to a
Samsung 40" smart TV. The Gear Live was connected to the
NEXUS 5 via Bluetooth, and the NEXUS was connected to
the Chromecast via a dedicated Wifi hotspot with an Internet
link. The smart TV was set up on a wall at 1.2 meters of
height from the ground and at 1.5 meters away from a couch.

B. Participants

The experiments were conducted with 15 participants, with
age between 21 and 48 years old and average of 22 years. They
were undergraduate students, mostly from Information Systems
and Computer Science courses. One was from Psychology
and another from Graphic Design. All of them declared to
have none or very basic knowledge on smartwatches and little
experience with gesture recognition. Only 3 participants opted
to wear the smartwatch on the right arm.

339

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:25:19 UTC from IEEE Xplore. Restrictions apply.

C. Template Recording, Testing Scenario and Evaluation
Metrics
Initially, the participants were presented, one at a time, to

a scenario with a video displaying on a TV controlled by
a smartwatch. The behavior and the logic of the prototype
were explained, followed by a demonstration in which proper
posture, trigger action and gesture options were clarified. Hence,
whenever the participants were comfortable with all concepts
presented, they were invited to a template recording session.

1) Template Recording : The template recording session
involved two parts.
Firstly, the participants were asked to perform the trigger

gesture for as long as they need to get used to it. Also,
they could perform any gesture freely, trying to mimic those
demonstrated previously.
Then, the participants were asked to record their own gestures

for each option of the gesture set. Although they were suggested
to use a visual description of the gestures as a reference, they
had the freedom to record the actions in the way they felt
more comfortable, as long as they were aware of the timeout
for gesture performing. The template recording was performed
twice, changing the posture (one with the participant sitting
down, and the other with he or she standing up).
During this stage of the experiment, the watch screen was

kept in a template recording mode (Fig. 3b), consequently not
having any effects on the video. As described in Section III-C2,
the recorded gestures were stored in the smartphone for being
used as a parameter by the Gesture Classifier module. After
all templates were recorded, the testing session started.

2) Testing Scenario: In a test routine, a participant could
interact to the video playback with the sequence of gestures
that he or she prefers. The only constraint was to have each
gesture performed at least once, completing a test set. When a
gesture was correctly classified, the corresponding command
request was sent to the Chromecast, causing a response action
on the TV.
Testing routines were planned to be performed four times

for each posture (sitting down or standing up). The participants
were instructed to act the most natural as possible, and to keep
their focus on the device that was being controlled, instead of on
the smartwatch. The gesture classification rate was considered
a test independent variable, while posture and gesture types
were assumed as dependent variables.
At the end of each test session, a questionnaire was applied

to verify the participant opinions, thoughts and suggestions on
the proposed interaction model and about the prototype.

3) Evaluation Metrics: For better visualizing the obtained
data, confusion matrices were built. A confusion matrix shows
the relation between an actual class, which, in our case, is the
expected gestures performed, and a predicted class, here the
answer returned by the Gesture Classifier module. It is useful
to count the hit rate of each gesture (true positives), and also
to identify for which gestures the classifier got mistaken (false
positives).

V. RESULTS

In summary, the testing sessions were performed by 15
participants, executing each gesture 4 times sitting down and
4 times standing up, 60 samples per gesture each, providing
a total of 720 gestures. However, before each testing session,
one set for each posture was recorded as user template for the
classifier validation. All testing gestures were stored, properly

labeled, organized in confusion matrices as presented in TABLE
II, and analyzed.

TABLE II: Confusion Matrix

(a) Sitting down

Predicted Gesture
UP DOWN LEFT RIGHT PUSH PULL

UP 57 1 1 1 0 0

DOWN 0 58 0 1 0 1

LEFT 1 2 52 3 1 1

RIGHT 2 4 1 46 2 5

PUSH 1 4 1 5 48 1

PULL 2 3 6 3 7 39
Hits 95% 97% 87% 77% 80% 65%

E
xp

ec
te

d
G

es
tu

re

(b) Standing up

Predicted Gesture
UP DOWN LEFT RIGHT PUSH PULL

UP 58 0 1 1 0 0

DOWN 0 56 0 2 1 1

LEFT 0 1 53 1 1 4

RIGHT 0 1 0 55 4 0

PUSH 0 0 0 2 57 1

PULL 3 3 2 2 1 49
Hits 97% 93% 88% 92% 95% 82%

E
xp

ec
te

d
G

es
tu

re

As shown in the table, hits were very high for most of
the gestures in both postures, although, for the sitting down
posture, they were a little lower. The pull gesture was the
least effective one, specially in the sitting down posture. We
were aware that this would be challenging, because this gesture
is not ergonomic enough, mainly in the sitting down posture
given the obstacle caused by the backrest and the armrest of
the sofa. However, the pull gesture was kept in the gesture set
in order to evaluate arm movements in all possible ways.
The Up and down gestures showed better accuracy, possibly

as a consequence of causing a clear change on the accelerometer
data when opposing to the Y axis. Some participants preferred
performing the up gesture simply raising their wrist up, while
others performed more elaborated gestures, twisting their wrist
to have the hand palm towards the ceiling. However, this
behavior did not interfere on the hit rate.
Fig. 6a) presents a summary of questions 1 and 2 from the

questionnaire answers. Question 1 is about the participant expe-
rience during the experiments and about 12 of 15 participants
said they enjoyed it. Question 2 covered if they would use our
approach to control a TV. About 9 of 15 participants said they
could not decide yet, but some of them stated that they would
consider the idea if they could have control over more devices.
Questions 3 and 4 from the questionnaire were about the

experience with the prototype trigger and with the proposed
gestures (Fig. 6b). In question 3, 7 and 4 participants qualified
the trigger detection as excellent and good, respectively. We
should note that none qualified it as poor or unacceptable, but
4 participants qualified it as acceptable and this reveals that
we have to fix some issues about the hand and arm positions
of the trigger, in order to provide a better user experience. For
question 4, 9 and 6 participants qualified the proposed gesture
set as good and excellent, respectively.
Finally, we requested more detailed explanations to the

participants in the questionnaire. Some of them argued that

340

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:25:19 UTC from IEEE Xplore. Restrictions apply.

Question 1 Question 2

1
3
5
7
9
11
13
15

Disagree Neutral Agree

(a) User experience during experiments (Question 1) and possi-
bility of technology adoption (Question 2).

Question 3 Question 4

1
3
5
7
9
11
13
15

Unacceptable Poor Acceptable

Good Excellent

(b) Trigger (Question 3) and proposed gestures (Question 4).

Fig. 6: Answers for user experience questionnaires.

they would like to watch TV in a more relaxed position than
the ones defined in the test, such as laying down in a sofa.
Also, most of the participants mentioned enjoying the feeling
of having the “power in their hands”. We observed that this
feeling was intensified by the visual and audio feedback on
the TV, and also the smartwatch vibration.

VI. CONCLUSION

We proposed a fully functional prototype for smart TV
gesture control via smartwatches, entitled Wrist Player. We
analysed a classification algorithm performance on two different
postures, where participant executed six different gestures with
repetitions. The average hit rate was very high for both postures,
even using only one recorded templates set before each test
session. We also evaluated the user experience, showing that
although our prototype needs some improvements, it gives a
very good experience and has potential to complement the
traditional TV remote control.

VII. FUTURE WORK

We intend to improve the classification technique using
other approaches such as the k-Nearest Neighbors method,
and more training sets. Adding the gyroscope sensor data can
also be useful and improve gesture and trigger detection. In
the current project, we avoided the gyroscope due to some
hardware instabilities. For example, in the Moto 360 this sensor
was completely disabled after some system updates. We also
plan to expand our approach to the Internet of Things, and
allow users to control other devices such as air-conditioners
and windows.

VIII. ACKNOWLEDGMENT

We would like to thank for collaboration from PixelLab
members and volunteers who were very kind and supportive
on elaboration of this paper.

REFERENCES

[1] Rekimoto, Jun, “Gesturewrist and gesturepad: Unobtrusive wearable inter-
action devices,” inWearable Computers, 2001. Proceedings. Fifth Interna-
tional Symposium on. IEEE, 2001, pp. 21–27.

[2] Kela, Juha, Korpipää, Panu, Mäntyjärvi, Jani, Kallio, Sanna, Savino,
Giuseppe, Jozzo, Luca, and Di Marca, Sergio, “Accelerometer-based ges-
ture control for a design environment,” Personal and Ubiquitous Comput-
ing, vol. 10, no. 5, pp. 285–299, 2006.

[3] Liu, Jiayang, Zhong, Lin, Wickramasuriya, Jehan, and Vasudevan, Venu,
“uwave: Accelerometer-based personalized gesture recognition and its
applications,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 657–675,
2009.

[4] Kühnel, Christine, Westermann, Tilo, Hemmert, Fabian, Kratz, Sven,
Müller, Alexander, and Möller, Sebastian, “I’m home: Defining and eval-
uating a gesture set for smart-home control,” International Journal of
Human-Computer Studies, vol. 69, no. 11, pp. 693–704, 2011.

[5] J. Speir, R. R. Ansara, C. Killby, E. Walpole, and A. Girouard, “Wearable
remote control of a mobile device: Comparing one- and two-handed
interaction,” in Proceedings of the 16th International Conference on
Human-computer Interaction with Mobile Devices & Services, ser.
MobileHCI ’14. New York, NY, USA: ACM, 2014, pp. 489–494.

[6] S. McGuckin, S. Chowdhury, and L. Mackenzie, “Tap ’n’ shake: Gesture-
based smartwatch-smartphone communications system,” in Proceedings
of the 28th Australian Conference on Computer-Human Interaction, ser.
OzCHI ’16. New York, NY, USA: ACM, 2016, pp. 442–446.

[7] Mace, David, Gao, Wei, and Coskun, Ayse K, “Improving accuracy and
practicality of accelerometer-based hand gesture recognition,” on Interact-
ing with Smart Objects, p. 45, 2013.

[8] F. Kerber, P. Schardt, and M. Löchtefeld, “Wristrotate: a personalized
motion gesture delimiter for wrist-worn devices,” in Proceedings of the
14th International Conference on Mobile and Ubiquitous Multimedia.
ACM, 2015, pp. 218–222.

[9] J. Ruiz and Y. Li, “Doubleflip: A motion gesture delimiter for mobile
interaction,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’11. New York, NY, USA: ACM, 2011,
pp. 2717–2720.

[10] L. Porzi, S. Messelodi, C. M. Modena, and E. Ricci, “A smart watch-based
gesture recognition system for assisting people with visual impairments,”
in Proceedings of the 3rd ACM International Workshop on Interactive
Multimedia on Mobile & Portable Devices, ser. IMMPD ’13. New
York, NY, USA: ACM, 2013, pp. 19–24.

[11] G. Costante, L. Porzi, O. Lanz, P. Valigi, and E. Ricci, “Personalizing
a smartwatch-based gesture interface with transfer learning,” in 2014
22nd European Signal Processing Conference (EUSIPCO), Sept 2014, pp.
2530–2534.

[12] C. Xu, P. H. Pathak, and P. Mohapatra, “Finger-writing with smartwatch:
A case for finger and hand gesture recognition using smartwatch,” in
Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, ser. HotMobile ’15. New York, NY, USA:
ACM, 2015, pp. 9–14.

[13] S. Sen, V. Subbaraju, A. Misra, R. K. Balan, and Y. Lee, “The case for
smartwatch-based diet monitoring,” in Pervasive Computing and Com-
munication Workshops (PerCom Workshops), 2015 IEEE International
Conference on. IEEE, 2015, pp. 585–590.

[14] A. Ferrari, D. Puccinelli, and S. Giordano, “Gesture-based soft authen-
tication,” in 2015 IEEE 11th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), Oct 2015,
pp. 771–777.

[15] A. Sarkisyan, R. Debbiny, and A. Nahapetian, “Wristsnoop: Smartphone
pins prediction using smartwatch motion sensors,” in 2015 IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS), Nov 2015,
pp. 1–6.

[16] F. Waris and R. G. Reynolds, “Using cultural algorithms to improve
wearable device gesture recognition performance,” in Computational In-
telligence, 2015 IEEE Symposium Series on. IEEE, 2015, pp. 625–633.

[17] R.-D. Vatavu and I.-A. Zaiti, “Leap gestures for tv: Insights from an elic-
itation study,” in Proceedings of the 2014 ACM International Conference
on Interactive Experiences for TV and Online Video, ser. TVX ’14. New
York, NY, USA: ACM, 2014, pp. 131–138.

[18] Seetharamu, Vinod Keshav, Bose, Joy, Sunkara, Sowmya, and Tigga,
Nitesh, “Tv remote control via wearable smart watch device,” in 2014
Annual IEEE India Conference (INDICON). IEEE, 2014, pp. 1–6.

[19] M. Pedley, “Tilt sensing using a three-axis accelerometer, freescale semi-
conductor application note,(2013), n,” AN3461, rev, vol. 5.

[20] ten Holt, Gineke A, Reinders, Marcel JT, and Hendriks, EA, “Multi-
dimensional dynamic time warping for gesture recognition,” in Thirteenth
annual conference of the Advanced School for Computing and Imaging,
vol. 300, 2007.

341

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 02,2022 at 16:25:19 UTC from IEEE Xplore. Restrictions apply.

