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A B S T R A C T

Glaucoma is a leading cause of irreversible visual field degradation, significantly impacting ocular health.
Timely identification and diagnosis of this condition are critical to prevent vision loss. A range of diagnostic
techniques is employed to achieve this, from traditional methods reliant on expert interpretation to modern,
fully computerized diagnostic approaches. The integration of computerized systems designed for the early
detection and classification of clinical indicators of glaucoma holds immense potential to enhance the accuracy
of disease diagnosis. Pupillary Light Reflex (PLR) analysis emerges as a promising avenue for glaucoma
screening, mainly due to its cost-effectiveness compared to exams such as Optical Coherence Tomography
(OCT), Humphrey Field Analyzer (HFA), and fundoscopic examinations. The noninvasive nature of PLR
testing obviates the need for disposable components and agents for pupil dilation. This facilitates multiple
successive administrations of the test and enables the possibility of remote execution. This study aimed to
improve the automated diagnosis of glaucoma using PLR data, conducting an extensive comparative analysis
incorporating neural networks and machine learning techniques. It also compared the performance of different
data processing methods, including filtering techniques, feature extraction, data balancing, feature selection,
and their effects on classification. The findings offer insights and guidelines for future methodologies in
glaucoma screening utilizing pupillary light response signals.
1. Introduction

Glaucoma encompasses a group of optic neuropathies characterized
by progressive degeneration of Retinal Ganglion Cells (RGCs) and
their axons, resulting in visual field loss [1–4]. The loss of visual
function due to glaucoma is generally an irreversible process and,
if not appropriately treated, can progress to visual impairment and
even blindness [1–4]. Furthermore, glaucoma treatment becomes more
complex, expensive, and challenging the more advanced the disease is.
Therefore, early detection and diagnosis of glaucoma are essential to
prevent its progression and minimize its damage [2,4].

The most commonly used tests to diagnose glaucoma include:

• Tonometry: Standard procedure for measuring Intraocular Pres-
sure (IOP), being an important indicator in assessing the risk
of glaucoma, especially when elevated [5]. Tonometry has the
disadvantage of being uncomfortable for some patients due to
the need to apply anesthetic eye drops and the contact of the
tonometer with the cornea.

∗ Corresponding author.
E-mail address: hedenirmonteiro@inf.ufg.br (H.M. Pinheiro).

• Campimetry: Diagnostic tool that maps the patient’s visual field,
essential for identifying regions of visual loss potentially caused
by glaucoma [6]. The disadvantage of this test is its subjectivity,
as it depends on the patient’s response to the perception of visual
stimuli. Furthermore, its effectiveness is limited in children and
the elderly and only detects significant damage to the optic nerve,
since up to 40% of retinal ganglion cells can be lost before any
changes in the visual field can be detected [7].

• Fundoscopy (Ophthalmoscopy): This exam allows a detailed
inspection of the fundus [8]. It can be performed with a direct or
indirect ophthalmoscope, fundus camera, or OCT [9], considered
the reference technique for the structural detection of glaucoma.
However, these exams require specialized equipment and man-
agement by an ophthalmologist, which may not be available or
accessible to a portion of the population.

The researchers [1,4,10–25] showed that the pupillary response to
light in individuals with glaucoma differs from the pupillary response
https://doi.org/10.1016/j.array.2024.100359
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of healthy people and can therefore be used as a potential biomarker
of this pathology. Chromatic pupillometry presents an additional alter-
native in detecting glaucoma, expanding the available exam options
for diagnosing this condition [26,27]. It consists of evaluating the
contraction and dilation movements of the pupil when faced with lu-
minous stimuli with visible light of different colors for specific periods.
The advantage of analyzing the pupillary light reflex is that it can be
carried out in a practical and non-invasive way. However, the success
rates in detecting early primary open-angle glaucoma have not yet
become significant enough to make chromatic pupillometry inserted
into clinical practice.

Machine learning algorithms, as they can recognize patterns through
data analysis, have been widely used to support medical applications
in general to diagnose and screen various pathologies. Therefore, these
algorithms can also extract information from data obtained through
chromatic pupillometry. Currently, there is not enough research on the
effectiveness of algorithms that use pupillometry and analysis of the
pupillary light reflex to screen, triage, or diagnose glaucoma, especially
in detecting primary angle glaucoma at its initial stage. As a result, the
success rates of these methods remain relatively unknown.

Several works published in the last five years have only statistical
analyses to show PLR’s ability to discriminate between healthy and
glaucomatous individuals [1,10,11,21–25,28–30].

The studies [31–34] applied machine learning techniques to diag-
nose glaucoma based on information extracted from the segmentation
of fundus images. Our work differs in evaluating machine learning
techniques not on fundus images but on data from chromatic pupillom-
etry, which portrays the volunteers’ pupillary light reflex. The work of
Quan et al. [35] carried out a proof of concept of using PLR to detect
glaucoma. His analysis was limited, however, to statistically testing the
significance of the characteristics used in the test.

Our study investigates glaucoma detection methods using machine
learning techniques, focusing on improving the analysis of pupil be-
havior. We explore how strategies for (1) filtering and denoising the
pupillary signal, (2) extracting relevant features, (3) performing feature
selection, (4) data balancing, and (5) the appropriate choice of a
classifier can enhance the analysis of pupillary light reaction in the
process of screening, tracking and diagnosing glaucoma.

2. Materials and methods

In this study, we assess various machine learning techniques to
determine their efficacy in aiding the diagnosis of glaucoma. The
dataset employed comprises examinations from individuals without
glaucoma (control group) and from patients with varying degrees of
glaucoma. Consequently, we categorize diagnostic scenarios into binary
and multi-class classifications to encompass the range of clinically
relevant situations.

In our binary classification approach, we organize the data into
distinct pairs for targeted analysis:

1. Control vs. Pathological: This classification focuses on distin-
guishing the control group from the pathological group without
considering the pathology’s severity.

2. Control vs. Initial Stage: Here, the objective is to precisely
differentiate the control group from those in the initial stages
of glaucoma.

3. Control vs. Moderate Stage: In this category, we aim to identify
differences between the control group and those with moderate
glaucoma.

4. Control vs. Severe Stage: This classification is dedicated to con-
trasting the control group with individuals in the severe stages
of glaucoma.

Each category is designed to refine our understanding and detection
f glaucoma at various stages of its progression.

In the multi-class classification segment, we categorize the data to

iscern among multiple classes simultaneously:

2 
Table 1
Brief description of the samples available in the database.

Dataset description

Groups N Videos Age (𝜇 ± 𝜎) Male

Control 113 243 42 ± 13 49 (43%)

Glaucomatous

Early 108 217 57 ± 12 62 (57%)
Moderate 21 38 54 ± 14 10 (48%)
Severe 8 14 61 ± 8 4 (50%)

Sub. Total 137 270 57 ± 14 76 (55%)

Total 250 512 53 ± 8 125 (50%)

Number of Volunteers (N).

5. Control vs. Initial vs. Moderate vs. Severe: This classification
aims to differentiate among all possible labels in the database in
a singular analysis. It determines whether a patient is healthy or
pathological and, if pathological, identifies the specific severity
of the condition.

6. Initial vs. Moderate vs. Severe: This approach is designed for
scenarios where it is already established that the patient has a
pathological condition, but the precise degree of the pathology
needs to be ascertained.

Following establishing these diagnostic interest groupings, we im-
plemented several techniques, including filtering, feature extraction,
selection, and data balancing. We then evaluated the efficacy of various
classifiers. Fig. 1 presents a schematic of the evaluation flow for the
machine learning techniques, detailed in subsequent sections.

Upon concluding the study, we aimed to ascertain the most effective
technique for each diagnostic scenario.

2.1. Pupillary database

The dataset created for this research consists of 512 videos, each
lasting 4 min and 5 s, showcasing the pupillary light reflex of 250
volunteers. Among these participants, 113 were healthy, and 137 had
glaucoma. Several volunteers contributed more than one recording per
eye. The recording adhered to the protocol outlined in Section 2.2.
Eligibility criteria for volunteers included having visual acuity better
than 20/100 in both eyes, no eye surgeries within the past three
months, and being over 18. Participants were also requested to abstain
from caffeine consumption for at least an hour before the recording.
During the examination, the participants sat comfortably in a com-
pletely dark room. They wore the pupillometer and were instructed
to focus on a point inside that acted as a visual reference without
stimulating their pupils. All participants outside the control group were
diagnosed with open-angle glaucoma, the most common form of this
condition. The age and sex distribution of the volunteers is detailed
in Table 1. This study received ethical approval from the Hospital de
Urgências de Goiânia (HUGO) ethics board, under technical advice
number 5.990.785, registered on the Brazil platform.

2.2. Video recording protocol and equipment

The recording protocol adopted in this study details the video
recording process for analyzing pupillary light reactions. It specifies
critical elements such as the initial adaptation time to darkness, the
duration, intensity, and color of each light stimulus, the quantity of
stimulus applied, the interval of adaptation between stimuli, and which
eye will be stimulated and recorded.

The chosen protocol includes an initial dark adaptation period of
10 min, following the guidelines compiled by Pinheiro H. et al. [36] and
four stimulation using chromatic LEDs: the first stimulus had a wave-
length of 623 nm (red), the second stimulus a wavelength of 466 nm
(blue), followed by 517 nm (green) wavelength stimulus, and finishing
with white light stimulus. The selection of colors to stimulate pupil
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Fig. 1. Proposed method diagram divided into three main steps: biomarkers processing, data classification, and result analysis.
Fig. 2. Illustration of the established protocol, encompassing the initial phase of
pupillary adaptation, the color spectrum, and duration of chromatic stimulation, along
with the specified intervals for adaptation between each stimulus.

response was guided by the findings presented by Rukmini et al. [37].
They recommended using red and blue light, while Crippa et al. [38]
suggested using green light. Both studies highlighted the importance
of chromatic pupillometry in assessing the health of photoreceptors in
the optic nerve and retina for various diseases. The duration, intensity,
and interval of adaptation between each stimulus were set at 1 s,
with an intensity of 250 cd/m2, as established by Park [39]. The
adaptation period between stimuli was defined at 59 s, according to
the recommendations of Gracitelli et al. [40].

Following the initial adaptation period, the video recording com-
menced. Five seconds into the recording, the first stimulation was
initiated. Each rest and pupil stimulation cycle constituted a signal
segment, resulting in four distinct recording phases, as illustrated in
Fig. 2. The total duration of each recording was 4 min and 5 s, captured
at a rate of 30 frames per second, amounting to a total of 7350 frames.

Stimulation can be applied to the same eye under examination
(direct reflex assessment) or to one eye while evaluating the response in
the other eye (consensual reflex assessment). In this study, both reflexes
were used in the recordings.

The pupillometer used in this study was first introduced by Pinheiro
H. et al. [41] and later improved by Silva et al. [42] to incorporate
chromatic pupillometry capabilities. This device was chosen based on
its ability to meet requirements, such as enabling chromatic stimulation
using RGB LEDs, allowing for a customizable duration and intensity
of the stimulation, preventing external light from affecting both the
recording and the pupillary reflex, providing infrared illumination for
recording, which is invisible to the human eye and thus does not impact
the pupillary stimulation; offering the flexibility to record and stimulate
either eye, enabling the capture of both direct and consensual reflexes.
3 
2.3. Segmentation and preprocessing

In digital image processing and computer vision, image segmenta-
tion is partitioning a digital image into multiple segments or objects,
often referred to as image regions of interest or pixel sets. The primary
goal of segmentation is to simplify the image’s representation, making
it more meaningful and more straightforward to analyze, as noted by
Stockman and Shapiro [43].

Extracting the pupillary signal by measuring the pupil diameter
throughout the recording period is essential for Pupillary Light Reflex
analysis. This requires accurately locating the pupil and measuring its
diameter in each frame. This study used the YOLOv7 [44] convolutional
neural network object detector, which was retrained using a dataset of
10,000 hand-labeled pupil images for accurate pupil measurement.

Following the retraining process, the neural network exhibited en-
hanced proficiency in pupil detection, successfully identifying and de-
lineating the pupil’s bounding box in each video frame. The dimensions
of this bounding box enabled the calculation of the pupil’s pixel di-
ameter: its height representing the vertical diameter and its width the
horizontal diameter. Based on the approach recommended by Zandi
et al. [45], the larger of the two diameters was designated as the
definitive measurement of the pupil’s diameter.

Measuring the pupillary diameter in each frame yields a pupillary
signal that illustrates the pupil’s dynamic behavior and diameter fluc-
tuations over time. Fig. 3 displays a complete pupillary signal from a
volunteer.

There are several phases involved in conducting a pupillary ex-
amination. First, the volunteer’s video is recorded. Then, the video is
analyzed to locate the pupil and measure its diameter for each frame.
Next, a curve or signal is created to represent the pupillary behavior.
Once this is done, the pupillary reflex is assessed. The process of
assessing the reflex involves preprocessing, filtering, feature extraction,
feature selection, balancing, and signal classification.

In the preprocessing stage, 24 s were excluded from each sec-
tion’s post-stimulation and post-redilation phases to minimize signal
redundancy.

2.4. Filtering

The pupillary signal can be affected by noise due to blinks or shifts
in the volunteers’ gaze direction. Despite instructions to maintain focus
on a specific point on the pupillometer and minimize blinking, blinks
and gaze deviations were still observed.
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Fig. 3. Segmented pupillary signal, after removing redundant periods.
We conducted a study to determine the effectiveness of three meth-
ds for filtering out extraneous noise in signal classification. The first
ethod, No Filtering (NF), analyzes the signal without interference.
he second method, called Custom Filtering (CF), uses a custom algo-
ithm to remove outlier readings that exceed the limits established by
upillary physiology and eliminate sudden fluctuations in the signal.
he third method, Low-Pass Filtering (LP), attenuates high-frequency
oise components. We tested each method to see how well it improved
he accuracy and reliability of signal classification.

We excluded the moving average filter from our analysis. It proved
neffective in noise removal with windows smaller than 20 frames and
istorted the signal with more extensive window settings.

Custom-designed filter to deal with sudden signal changes that
xceed a predetermined threshold. Initially, the threshold is set at a
ow value of 3, and any changes in the signal that exceed this threshold
re removed, except when their removal would result in discontinuity.
he filter is programmed to avoid removing more than 20 consecutive
rames. If we observe any discontinuity, we adjust the threshold. We
ncrementally increase the threshold by 1 unit and then reapply the
iltering process. We repeat this iterative procedure until we achieve

version of the signal free of sudden changes and discontinuities.
ou can find more details on this process in the pseudocode outlined

n Appendix A.
The low-pass filter is sourced from the SciPy signal library and uti-

izes the ‘filfit’ function, which is notable for not inducing phase shifts
n the signal. It accomplishes this by applying the filter once forward
nd once in reverse. This filter was set up with a cutoff frequency of 0.6,
n order of 3, and a Nyquist frequency (Nqy) calculated as 0.5 times
he recording frame rate, 30 fps in this study.

.5. Feature extraction

Feature extraction transforms the input data into a more com-
act subspace, retaining the essential information from the original
ataset [46]. This technique is particularly effective in enhancing the
erformance of classification algorithms, especially compared to using
aw data directly.

In our study, we analyzed the pupillary signal in two ways. Firstly,
e considered the complete set of diameters without any feature ex-

raction. Secondly, we extracted ten features that have been identified
n the literature. These features were derived from the four signal
timulation phases, resulting in 40 features. Additionally, two features
ere extracted from the complete signal, bringing the total number of

eatures to 42.
The following outlines the extracted features from each signal stim-
lation section:

4 
1. Initial Diameter (ID): The average pupil diameter at rest before
the light stimulus, typically the maximum diameter. Calculated
using the average of twenty frames 0.3 s before stimulation.

2. Maximum Contraction (MC): The minor diameter observed in
the section, usually during stimulus application. Calculated by
identifying the smallest diameter post-stimulus, excluding values
under 40 pixels.

3. Time to Maximum Contraction (TMC): The duration is taken to
reach maximum contraction post-stimulus onset. Determined by
the frame number at which the most minor diameter occurs.

4. Absolute Contraction Amplitude (ACA): The difference between
the largest (initial diameter) and smallest (maximum contrac-
tion) diameters. Calculated by subtracting MC from ID.

5. Relative Contraction Amplitude (RCA): The smallest to largest
diameter ratio. Calculated by dividing MC by ID.

6. Contraction Speed (CS): Amplitude to time ratio for maximum
contraction. Calculated by dividing ACA by TMC.

7. Latency (LAT): The time between stimulus onset and contrac-
tion effective start. Determined by the first instance where the
diameter reduces by 5% from ID.

8. Diameter of Re-dilation after 6 s (DREL6s): Pupil size 6 s post-
stimulus. Calculated from the first valid diameter in a tolerance
10-diameter window post-stimulus; −1 assigned if no valid value
was found inside the tolerance window.

9. Re-dilation Time (RELT): Time for the pupil to return to 80%
of the initial diameter post-stimulus. Calculated by finding the
frame position exceeding 80% of ID.

10. Higuchi Fractal Complexity (HFC): A nonlinear measure of frac-
tal dimension in time series. Calculated over 20 frames, 0.3 s
before stimulation, discarding invalid values and analyzing up to
5 time series scales (kmax). Refer to Ngo et al. [47] for detailed
insights on Higuchi fractal complexity and its significance in
differentiating between control and glaucomatous patients.

Below is a description of the characteristics applied to the complete
signal:

11. Diameter at the End of the Exam (DEE): represents the pupil size
at the end of the exam. We calculated this as the average of the
last ten diameters of each curve, discarding diameters smaller
than 40 pixels.

12. Higuchi Fractal Complexity in Signal (HFCS): is the Higuchi
complexity, in this case, applied across the entire pupillary
curve. We calculate the complexity by considering the curve as a
whole, disregarding impossible diameters, and, as in the analysis

per section, defining the parameter K-max = 5.
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With feature extraction from the pupillary signal complete, the
following steps involve balancing the samples and selecting the most
compelling features for further analysis.

2.6. Balancing

An imbalance in a two-class dataset occurs when the minority class
is significantly underrepresented compared to the majority class. Our
analyses define an imbalance when the difference in class proportions
exceeds 10%. Balancing is deemed unnecessary if the sample difference
percentage does not surpass this threshold.

We employed both undersampling and oversampling techniques to
achieve balance in cases where class imbalance was identified. Under-
sampling involves randomly removing samples from the majority class
to align their size with that of the minority class. Conversely, oversam-
pling involves augmenting the minority class with synthetic samples
(created from existing samples) until the class sizes are equivalent.
For oversampling, we used the SMOTE algorithm (Synthetic Minority
Over-sampling Technique), setting the number of neighbors k to 5.
SMOTE is a data augmentation method that resamples by considering
the neighborhood of a sample and generating a new instance based on
this proximity [48].

2.7. Feature selection

Feature selection (FS) is a process aimed at identifying pertinent fea-
tures while eliminating irrelevant, redundant, or noisy data. Irrelevant
features fail to contribute meaningful information, whereas redundant
features offer no additional insights beyond what is already obtained
from the selected features [49]. The purpose of feature selection is
threefold: (1) to enhance classification accuracy by preventing over-
fitting, (2) to develop more streamlined models, and (3) to increase
the interpretability of models for human understanding. Feature se-
lection methods fall into three main categories: filter, wrapper, and
embedded methods. Filter methods, such as SelectKBest, utilize general
criteria like correlation to discard irrelevant features independently of
machine learning algorithms. Wrapper methods use classifiers to gauge
performance and choose the optimal feature combination. Embedded
methods integrate feature selection directly into the machine learning
process.

In our research, we utilized three different feature selection meth-
ods.

Firstly, we used the SelectKBest filter-based method, which evalu-
ates the individual relationship between each feature and the output
variable using a specific statistical test (analysis of variance—ANOVA
in this study) to select the top k attributes.

Secondly, we employed Recursive Feature Elimination (RFE), a
wrapper-based technique. The RFE method is an iterative approach that
starts with all features and progressively removes the least significant
ones based on model performance. Random Forest is used in this study
until the targeted number of features is achieved.

Finally, we used LassoCV, an embedded method. LassoCV applies
the Lasso linear model, which utilizes iterative fitting along a regu-
larization path during training. It employs L1 (Lasso) regularization
to identify and select significant features effectively, enhancing model
performance and interpretability.

The feature selection process was crafted to identify the top twenty
features. This was explicitly implemented for the SelectKBest and RFE
methods. Unlike these, the LassoCV selector was set with a tolerance
level of 0.01, enabling it to select a flexible number of features. The
twenty best coefficients were used in the second step to choose the
20 best features. Following the completion of feature selection from
the pupillary signal data, the subsequent phase involves tackling the
challenge of sample balancing.
5 
2.8. Crop signal

In signal processing, ‘‘cropping a signal’’ refers to identifying and
isolating a specific segment from a complete signal for further analysis
or use. This is similar to cropping an image, but instead of selecting a
portion of an image, we choose a portion of a time series or waveform.
This can isolate a specific time interval or remove unwanted signal
parts for analysis or processing. In this research, we will divide the
signal into four segments corresponding to the color of stimulation: red,
blue, green, and white, as defined in the recording protocol.

This approach aimed to reduce the total number of features by
treating this division as a type of feature selection. As a result, the
number of features without extraction decreased from 1500 to 375, and
with feature extraction, it was further reduced to just 10. This analysis
excluded the DEE and HFCS features, which refer to the complete
signal.

2.9. Classifiers

To evaluate the effectiveness of previously utilized techniques in
glaucoma classification, we employed the following classifiers:

(A) Linear Classifier:
Linear Discriminant Analysis (LDA): Identifies a linear combina-
tion of features that best differentiates two or more classes.

(B) Neighbor-based Classifier:
K-Nearest Neighbors (KNN): This method classifies an input by
considering its closest neighbors, where ‘‘K’’ denotes the number
of neighbors used.

(C) Tree-based Classifiers:
Decision Tree (DT): Employs a decision tree structure for classi-
fication.
Random Forest (RF): Utilizes an ensemble of decision trees.
Extra Trees (ET): A variant of Random Forest, where splits at
each tree node are chosen randomly rather than for maximal
purity.

(D) Boosting-based Classifiers:
AdaBoost (AB): Integrates multiple ‘weak’ classifiers to enhance
classification strength.
Gradient Boosting (GB): Improves classification by adjusting for
the residuals of previous models.

(E) Probability-based Classifier:
Naive Bayes (NB): Applies Bayes’ theorem with the feature inde-
pendence assumption.

(F) Support Vector Based Classifier:
Support Vector Machine (SVM): This technique utilizes kernel
functions (linear, polynomial, RBF, sigmoid, etc.) to identify
optimal class separation boundaries.

(G) Neural Network-based Classifiers:
Fully Connected Neural Networks (FCN): These networks fea-
ture neurons in each layer that are fully connected to all neu-
rons in the subsequent layer. Due to the complete interlayer
connections, they are known as dense.
One-dimensional Convolutional Neural Networks (1D-CNN) are
designed for data with a grid-like structure, like time series (1D).
They effectively identify local patterns in datasets like audio,
financial time series, and genetic sequencing.
Transformers Neural Networks (TRANS): Introduced by Vaswani
et al. in ‘‘Attention is All You Need’’ (2017), these networks use
‘self-attention’ allowing each part of a sequence to interact with
every other part, capturing complex interrelationships. Their
primary innovation is the attention mechanism, which assesses
the relevance of different words or features in the context of a
specific word or feature.

Traditional classifiers were sourced from the Python scikit-learn
library, while artificial neural networks were developed using the
TensorFlow framework. The architectural diagram representations of
the neural networks are shown in Appendix B.
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Table 2
Main parameters used by the classifiers in the pupil signal classification
process.

Classifiers parameters

Classifier Parameters

LDA solver: {’svd’, ’lsqr’, ’eigen’}, used=’svd’,
n_components: int, used=None

KNN n_neighbors: int, used=5, weights: {’uniform’,
’distance’},
used=’uniform’, algorithm: {’auto’, ’ball_tree’,
’kd_tree’, ’brute’},
used=’auto’, metric: string, used=’minkowski’

DT criterion: {’gini’, ’entropy’}, used=’gini’, splitter:
{’best’, ’random’},
used=’best’, max_depth: int, used=None

RF n_estimators: int, used=100, criterion: {’gini’,
’entropy’},
used=’gini’, max_depth: int, used=None

ET n_estimators: int, used=100, criterion: {’gini’,
’entropy’}, used=’gini’
max_depth: int, used=None

AB base_estimator: object, used=None, n_estimators:
int, used=50
learning_rate: float, used=1.0

GBM loss: {’deviance’, ’exponential’}, used=’deviance’
learning_rate: float, used=0.1, n_estimators: int,
used=100

NB –

SVM C: float, used=1.0, kernel: {’linear’, ’poly’, ’rbf’,
’sigmoid’, ’precomputed’},
used=’rbf’, degree: int, used=3, gamma: {’scale’,
’auto’}, used=’scale’

FCN epochs=100, batch_size=8, dropout=0.25,
callbacks=early_stop

1D-CNN epochs=100, batch_size=8, filters=64,
dropout=0.25, callbacks=early_stop

TRANS epochs=100, batch_size=8 num_heads=4,
head_size=64
ff_dim=32, num_transformer_blocks=4
mlp_units={64}
dropout=0.25, mlp_dropout=0.4,
callbacks=early_stop

Linear Discriminant Analysis (LDA). k-Nearest Neighbors (KNN). Deci-
sion Tree (DT). Random Forest (RF). Extra Tree (ET). AdaBoost (AB).
Gradient Boosting Machine (GBM). Naive Bayes (NB). Support Vector
Machine (SVM). Fully Connected Neural Network (FCN). One Dimen-
sional Convolutional Neural Network (1D-CNN). Transformer Neural
Network (TRANS).

.10. Classification

The study involved a thorough evaluation that classified six ap-
roaches to grouping data, detailed in Section 2. Three filtering meth-
ds and two feature extraction strategies (with and without feature
xtraction) were also evaluated, which resulted in 36 separate classi-
ication scenarios. Four distinct feature selection techniques were ex-
mined for each scenario: No Feature Selection, SelectKBest, Recursive
eature Elimination, and Lasso.

We then applied three different filtering approaches for each com-
arison type: no filter, a customized filter, and a low-pass filter. Ini-
ially, we analyzed the entire pupillometry curve diameters without
eature extraction. Later, we extracted 42 features from the signal for
urther analysis. Two data balancing methods, namely undersampling
nd oversampling, were utilized.

This diverse approach was designed to uncover complex patterns in
upillometry data, guiding toward techniques that produce high accu-
acy in glaucoma classification. Table 2 presents the main parameters
sed by each classifier evaluated in the research.
6 
2.11. Validation

Cross-validation using the K-fold partitioning method (CV) is a
widely recognized technique for assessing the generalizability of ma-
chine learning models. This approach involves dividing the dataset into
K roughly equal, mutually exclusive subsets (folds). These folds are
then utilized in K rounds of model training and evaluation. K−1 subsets
are used for training each round, while the remaining subset serves as
the test set. This cycle is repeated until each subset has been the test
set once. Upon completion of these iterations, the performance results
from each fold are aggregated to yield an average measure of model
effectiveness [50].

In our study, we opted for a k-value of 5 in the cross-validation
process for classifiers. This choice strikes a balance between the size of
the training and test data sets while offering reduced computational
demands compared to larger k-values. To ensure data integrity and
prevent information leakage between the training and testing phases,
we grouped user videos such that all videos from a single volunteer
were exclusively assigned to either the training or the testing group
but never to both simultaneously.

2.12. Evaluation of results

To discern the impact of different methodologies on classification
outcomes and identify the most effective approach, we conducted two
evaluations for each classifier: a statistical assessment and an analysis
based on optimal accuracy.

2.12.1. Statistical assessment
Upon completing the classification phase, we performed statisti-

cal analyses of the results yielded by the classifiers. For determining
the normality of result distributions, we utilized the Shapiro–Wilk
test, which is particularly effective for small datasets like ours, as
opposed to the Kolmogorov–Smirnov test, which is better suited for
larger datasets [51]. When the classifier results followed a normal
distribution, we applied the paired Student’s t-test [52] for analysis.
Conversely, for non-normally distributed results, we employed the
Wilcoxon test [53], with a significance level of 0.05.

2.12.2. Evaluation by best accuracy
While statistical analysis provides an average performance overview

of various classifiers, it may not fully recognize the effectiveness of a
singular approach that performs exceptionally well, especially if other
classifiers do not yield similarly impressive results.

Thus, we supplemented the statistical analysis with an assessment
highlighting the classifier that achieved the highest accuracy, aiming
to pinpoint the most effective model in each employed approach.

This dual analysis method allows us to evaluate the consistency
across multiple classifiers and spotlight the top-performing one. Our
goal is to offer a comprehensive insight into the machine learning
techniques used in this study.

2.13. Evaluation metrics

To provide a comprehensive evaluation, we considered metrics: Ac-
curacy (ACC), reflecting the proportion of correctly identified cases out
of the total cases examined; sensitivity (True Positive Rate — TPR), which
uantifies the proportion of actual positive cases (individuals with
laucoma) correctly identified as such; Specificity (True Negative Rate

— TNR), measuring the percentage of actual negative cases (healthy
control patients) correctly identified; and F1-score, a metric that com-
bines sensitivity and precision into a single measure, representing the
harmonic mean of sensitivity and specificity.
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Table 3
Statistical analysis of the filtering methodologies highlighting the most effective approach or identifying the equivalents for
each grouping.

Filtering

Grouping Balancing Extraction NS SB RFE LA Summarization (freq.)

Best filtering strategy NF CF LP EQ

No EQ NF NF NF 3 0 0 1Under Yes NF NF NF EQ 3 0 0 1

No EQ NF NF CF 2 1 0 1Over Yes NF CF NF NF 3 1 0 0
Control vs
Pathological

SubTotal: 11 2 0 3

No NF NF NF NF 4 0 0 0
Under Yes CF EQ EQ EQ 0 1 0 3

No NF NF NF NF 4 0 0 0Over Yes NF NF NF CF 3 1 0 0
Control vs
Early

SubTotal: 11 2 0 3

No NF NF CF CF 2 2 0 0Under Yes EQ NF NF LP 2 0 1 1

No NF CF NF LP 2 1 1 0Over Yes LP LP LP LP 4 0 0 0
Control vs
Moderate

SubTotal: 10 3 2 1

No NF NF NF CF 3 1 0 0Under Yes CF CF CF CF 0 4 0 0

No NF NF NF NF 4 0 0 0Over Yes LP LP LP LP 0 0 4 0
Control vs
Severe

SubTotal: 7 5 4 0

No CF CF EQ CF 0 3 0 1Under Yes NF NF NF NF 4 0 0 0

No LP LP LP LP 4 0 0 0Over Yes NF NF LP LP 2 2 0 0

Control vs
Early vs
Moderate vs
Severe SubTotal: 10 5 0 1

No NF NF NF NF 4 0 0 0Under Yes CF CF NF CF 1 3 0 0

No NF NF NF LP 3 1 0 0Over Yes LP LP LP LP 0 0 4 0

Early vs
Moderate vs
Severe

SubTotal: 8 4 4 0

Total: 49 18 20 9

Under (Undersampling), Over (Oversampling), No Feature Selection (NS), SelectKBest (SB), Recursive Feature Elimination
(RFE), Lasso Feature Selection (LA), No Filtering (NF), Custom Filtering (CF), Low Pass Filter (LP), Equivalents (EQ), Frequency
of best strategy (freq.).
. Results

In our study, we undertook a comprehensive exploratory analysis of
he pupillary signal encompassing (1) three distinct filtering techniques

no filtering, filtering with a customized filter, and using a low
ass filter; (2) two methods of data balancing — undersampling and
versampling; (3) two approaches to feature extraction — no feature
xtraction and extracting forty-two mentioned in the literature features;
nd (4) four strategies for feature selection — no feature selection,
nd using SelectKbest, RFE, and LassoCV feature selectors. We then
rocessed the data using nine conventional classifiers: Support Vector
achines, K-Nearest Neighbors, Decision Tree, Random Forest, Extra
ree, Linear Discriminant Analysis, Gaussian Naive Bayes, AdaBoost,
nd Gradient Boosting Classifier. Additionally, the data was subjected
o three advanced classifiers based on neural network architectures,
ncluding Fully Connected, Convolutional, and Transformer models.

The findings from our investigation are compiled and analyzed
tatistically, considering the performance metrics of all classifiers and
xclusively focusing on the best accuracy achieved. In the following
ections, we will detail the outcomes of this statistical analysis, empha-
izing the effects and efficacy of signal filtering, feature extraction, data
alancing, and feature selection.
7 
3.1. Analysis of filtering techniques:

The pupillary signal underwent classification through three distinct
filtering methodologies: (1) without any filtration of the pupillary
signal, (2) using a specific filter designed to eliminate abrupt changes in
the pupillary signal, and (3) applying a low-pass filter to the pupillary
signal.

Table 3 presents a comparative analysis of these filtering strate-
gies. It outlines instances where the three filtering approaches were
significantly equivalent or superior to the others, considering six data
grouping methods and both undersampling and oversampling data
balancing techniques. The comparison is made for scenarios with and
without feature extraction, considering feature selection techniques.

3.2. Evaluating feature extraction efficacy:

This segment of the analysis focused on determining the most
effective approach for classifying the pupillary signal: whether extract-
ing specific, literature-identified features from the pupillary signal en-
hances classification performance or supplying the classifiers with the
complete spectrum of pupillary diameters without prior data synthesis.

Table 4 provides a statistical breakdown, based on classification
metrics, of instances where utilizing the full range of diameters was
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Table 4
Statistical analysis of feature extraction methodologies highlighting the most effective approach or identifying the equivalents
for each grouping.

Extraction

Grouping Balancing Filtering NS SB RFE LA Summarization

Best extraction strategy Strategy Freq.

NF Yes No No No No 7
CF EQ EQ No No Yes 2Under
LP Yes EQ No No EQ 3

NF Yes No No No No 7
CF EQ EQ No No Yes 2

Control vs
Pathological

Over
LP Yes EQ No No EQ 3

NF Yes EQ No No No 7
CF Yes No No No Yes 4Under
LP Yes Yes No No EQ 1

NF No No No No No 7
CF EQ EQ No No Yes 3

Control vs
Early

Over
LP EQ Yes No Yes EQ 2

NF Yes EQ Yes EQ No 1
CF EQ EQ No EQ Yes 6Under
LP Yes Yes Yes Yes EQ 5

NF No Yes No Yes No 6
CF EQ Yes No No Yes 5

Control vs
Moderate

Over
LP No Yes Yes No EQ 1

NF Yes Yes EQ Yes No 0
CF Yes Yes Yes Yes Yes 10Under
LP Yes Yes Yes EQ EQ 2

NF No Yes No No No 3
CF Yes Yes Yes Yes Yes 8

Control vs
Severe

Over
LP Yes Yes EQ Yes EQ 1

NF EQ No No No No 7
CF Yes Yes EQ EQ Yes 2Under
LP No No No No EQ 3

NF EQ Yes No EQ No 1
CF Yes Yes Yes Yes Yes 7

Control vs
Early vs
Moderate vs
Severe Over

LP EQ Yes EQ Yes EQ 4

NF No EQ No No No 5
CF Yes Yes Yes Yes Yes 5Under
LP EQ Yes No No EQ 2

NF No Yes No Yes No 2
CF Yes Yes Yes Yes Yes 10

Early vs
Moderate vs
Severe Over

LP Yes Yes Yes Yes EQ 0

No 53
Yes 64Total:
EQ 27

Under (Undersampling), Over (Oversampling), No Filtering (NF), Custom Filtering (CF), Low Pass Filtering (LP), No Feature
Selection (NS), SelectKBest Feature Selection (SB), Recursive Feature Elimination (RFE), Lasso Feature Selection (LA), Extracting
is the best option (Yes), No extraction is the best option (No), Statistical Equivalents (EQ), Frequency of best strategy (Freq.).
ither equivalent to or more effective than conducting feature extrac-
ion from the pupillary signal. The table concludes with a summary
ndicating the number of times feature extraction was statistically su-
erior, the number of times not extracting was better, and the number
f times the results were equivalent.

.3. Analysis of balancing techniques:

This part of our research aimed to explore the impact of data
alancing on the classification process. We specifically examined how
he application of balancing techniques influences the classification
utcomes.

Table 5 presents a comprehensive comparison, detailing the in-
tances in which the oversampling and undersampling techniques—
pplied to data both with and without feature extraction and across
arious feature selection methods—proved to be equivalent or superior.
hese findings are essential for providing a benchmark for subsequent
omparative analyses.
8 
3.4. Evaluating the impact of feature selection

In this analysis, our objective was to understand the influence of
Feature Selection on the classification process. Specifically, we aimed
to determine whether performing feature selection before classification
enhances results and, if so, which techniques demonstrate superior
performance.

Table 6 details instances where a feature selection technique out-
performed others, considering both undersampling and oversampling
balancing methods and contexts with or without feature extraction.

3.5. Best accuracy analysis

We evaluated the best-performing classifier, which could highlight
important performance within a particular methodology. Analyzing the
top classifier strengthens conclusions drawn from statistical analysis.

Table 8 presents the best classification accuracy achieved in our
study, along with the specific approach that contributed to this optimal
outcome.
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Table 5
Statistical assessment of oversampling and undersampling balancing techniques highlighting the most effective approach or
identifying the equivalents for each grouping.

Balancing

Grouping Extraction Filtering NS SB RFE LA Summarization

Best balancing strategy Strategy Freq.

NF Over EQ Over Under Over 4
EF Over EQ EQ EQ Under 1No
LP Over Over Over EQ EQ 7

NF EQ Over EQ EQ Over 4
EF Over Over Over Under Under 2

Control vs
Pathological

Yes
LP EQ EQ Over Under EQ 5

NF Over Over Over Under Over 8
EF Over Over Over EQ Under 1No
LP Over EQ Over EQ EQ 3

NF EQ Over Over Over Over 7
EF Over Over EQ Under Under 1

Control vs
Early

Yes
LP Over Over EQ EQ EQ 4

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0No
LP Over Over Over Over EQ 0

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0

Control vs
Moderate

Yes
LP Over Over Over Over EQ 0

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0No
LP Over Over Over Over EQ 0

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0

Control vs
Severe

Yes
LP Over Over Over Over EQ 0

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0No
LP Over Over Over Over EQ 0

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0

Control vs
Early vs
Moderate vs
Severe Yes

LP Over Over Over Over EQ 3

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0No
LP Over Over Over Over EQ 0

NF Over Over Over Over Over 12
EF Over Over Over Over Under 0

Early vs
Moderate vs
Severe Yes

LP Over Over Over Over EQ 0

Over 122
Under 5Total:
EQ 17

Under (Undersampling), Over (Oversampling), Lasso Feature Selection (LA), Recursive Feature Elimination (RFE), SelectKBest
Feature Selection (SB), No Feature Selection (NS), Statistical Equivalents (EQ), Frequency of the best strategy (Freq.).
.6. Assessing the signal after cropping

This analysis segments the signal into four distinct parts, each
orresponding to a stimulation period, to ascertain if a specific signal
ection is more prominent for classification purposes. Furthermore,
he analysis aims to identify the most effective stimulation color for
nhancing glaucoma screening. Considering the applied classification
ethodology, the results for each segment are presented in Table 7.

.7. Implementing the most promising classification technique

After evaluating various machine learning methods, we re-applied
lassification to the Control vs. Pathological data group, utilizing the
pproach identified as the most promising according to statistical analy-
is and by best accuracy. There was consensus among both analyses that
sing unfiltered data without feature extraction was the best approach.
owever, regarding the technique for feature selection, the statistical
nalysis pointed to the use of the RFE technique. In contrast, the
nalysis for the best accuracy with the entire signal indicated using the
assoCV (LA) technique. Both techniques were tested again, and the
9 
selection using LA combined with the LDA classifier proved to be the
most promising.

This Control vs. Pathological data grouping was selected in this
final analysis for its broad scope, effectively distinguishing between
healthy individuals and those with any degree of glaucoma. While this
approach does not discern the specific degree of glaucoma, it aligns
with our primary objective of developing an effective screening tool,
where detailed gradation is initially less critical.

Fig. 4 displays a violin plot illustrating the distribution of the 20
highest-ranked features from the ‘‘Control vs. Pathological’’ group, as
identified by the LassoCV selector. The values of these features have
been normalized using the Z-score method. The features correspond
to specific positions on the pupillary signal, identified as follows: (a)
p335, (b) p1448, (c) p1270, (d) p708, (e) p31, (f) p1369, (g) p1102,
(h) p172, (i) p1069, (j) p348, (k) p1437, (l) p1080, (m) p176, (n)
p1452, (o) p710, (p) p28, (q) p247, (r) p1393, (s) p496, (t) p1403.
A violin plot combines the elements of a box plot with a density
estimate, providing an overview of the data density throughout the
entire range of each feature. This visualization enables the observation
of data concentration and variability for each feature, categorized by
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Table 6
Statistical feature selection technique analysis highlights the most effective approach for each grouping.

Feature selection

Grouping Filter Extraction Filtering Best feature
selection

Summarization (Freq.)

NS SB RFE LA

NF LA
CF LANo
LP LA

0 0 0 3

NF RFE
CF RFE

Under

Yes
LP LA

0 0 2 1

NF RFE
CF RFENo
LP RFE

0 0 3 0

NF RFE
CF SB

Control vs
Pathological

Over

Yes
LP RFE

0 1 1 1

NF RFE
CF LANo
LP RFE

0 0 2 1

NF RFE
CF RFE

Under

Yes
LP RFE

0 0 3 0

NF RFE
CF RFENo
LP RFE

0 0 3 0

NF SB
CF RFE

Control vs
Early

Over

Yes
LP SB

0 1 1 1

NF LA
CF RFENo
LP RFE

0 0 1 2

NF RFE
CF LA

Under

Yes
LP LA

0 0 1 2

NF NS
CF LANo
LP LA

1 0 0 2

NF LA
CF RFE

Control vs
Moderate

Over

Yes
LP RFE

0 0 2 1

NF RFE
CF RFENo
LP RFE

0 0 3 0

NF RFE
CF RFE

Under

Yes
LP NS

1 0 2 0

NF RFE
CF LANo
LP LA

0 0 1 2

NF NS
CF LA

Control vs
Severe

Over

Yes
LP RFE

1 0 1 1

NF RFE
CF RFENo
LP SB

0 1 2 0

NF RFE
CF SB

Under

Yes
LP SB

0 2 1 0

NF RFE
CF RFENo
LP RFE

0 0 0 3

NF NS
CF NS

Control vs
Early vs
Moderate vs
Severe

Over

Yes
LP NS

3 0 0 0

NF RFE
CF RFE

(continued on next page)
10 
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Table 6 (continued).
Feature selection

Grouping Filter Extraction Filtering Best feature
selection

Summarization (Freq.)

NS SB RFE LANo
LP RFE

0 0 3 0

NF RFE
CF RFE

Under

Yes
LP SB

0 1 2 0

NF RFE
CF RFENo
LP NS

1 0 2 0

NF RFE
CF NS

Early vs
Moderate vs
Severe

Over

Yes
LP NS

2 0 1 0

Total 9 6 37 20

Under (Undersampling), Over (Oversampling), Yes Extraction (Yes), No Extraction (No), No Filtering (NF), Custom Filtering (CF), Low Pass
Filtering (LP), Lasso Feature Selection (LA), Recursive Feature Elimination (RFE), SelectKBest Feature Selection (SB), No Feature Selection (NS),
Frequency of best strategy (Freq.).
Table 7
Best classification accuracies achieved for each grouping by interest and approach utilizing a specific signal segment associated
with a stimulation color.

Best accuracy — segmented signal

Grouping Approach Best accuracy

Filtering Extraction Segment Balancing Classifier

Control vs Pathological LP Yes White Over KNN 0.6488
Control vs Early LP No Blue Over ET 0.6576
Control vs Moderate NF No Green Over ET 0.9493
Control vs Severe NF No Blue Over ET 0.9704
Control vs Early vs Moderate vs Severe NF No Red Over GBM 0.7631
Early vs Moderate vs Severe NF No Blue Over ET 0.9268

No Filtering (NF), Low Pass Filtering (LP), No Extraction (No), Yes Extraction (Yes), Over (Oversampling), k-Nearest Neighbors
(KNN), Gradient Boosting Machine (GBM), Extra Tree (ET).
Table 8
Best accuracies achieved by classifiers grouped by interest and approach using full signal.

Best accuracy — full signal

Grouping Approach Best accuracy

Filtering Extraction Selection Balancing Classifier

Control vs Pathological NF No LA Under LDA 0.7390
Control vs Early NF No LA Under NB 0.7297
Control vs Moderate NF No NS Over SVM 0.9810
Control vs Severe NF No RFE Over RF 0.98733
Control vs Early vs Moderate vs Severe NF No NS Over ET 0.7921
Early vs Moderate vs Severe NF No NS Over ET 0.9221

No Filtering (NF), No Extraction (No), No Feature Selection (NS), Recursive Feature Elimination (RFE), Lasso Feature Selection
(LA), Under (Undersampling), Over (Oversampling), Linear Discriminant Analysis (LDA), Naive Bayes (NB), Support Vector
Machine (SVM), Random Forest (RF), Extra Tree (ET).
lass. It is noticeable that the features are not entirely symmetric; these
ifferences between classes can be instrumental in data classification.

Additionally, Fig. 5 presents a heatmap illustrating the correlation
mong the 20 highest-ranked features, comparing the use of both the
assoCV selector (A) and RFE (B). In this heatmap, darker quadrants
re preferable, as they indicate reduced interdependence between the
eatures. Comparing heatmap A (LassoCV) with heatmap B (RFE) shows
hat heatmap A is slightly darker than B, which helps explain the better
ccuracy achieved using this feature selector in the analysis by best
ccuracy.

The LassoCV feature selector identified the following key features
rom the pupillary signal data: (a) p335, (b) p1448, (c) p1270, (d)
708, (e) p31, (f) p1369, (g) p1102, (h) p172, (i) p1069, (j) p348,
k) p1437, (l) p1080, (m) p176, (n) p1452, (o) p710, (p) p28, (q)
247, (r) p1393, (s) p496, (t) p1403. In contrast, the Recursive Feature
limination (RFE) selector pinpointed these features as most significant:
a) p98, (b) p178, (c) p343, (d) p349, (e) p350, (f) p367, (g) p403,
h) p498, (i) p499, (j) p713, (k) p854, (l) p1073, (m) p1105, (n)
11 
p1272, (o) p1469, (p) p1475, (q) p1489, (r) p1490, (s) p1491, (t)
p1492. Each feature set emphasizes the variations in selection criteria
and results between the two methodologies. Selecting less correlated
features in classification models is advantageous because it reduces
redundancies and ensures that each feature contributes unique infor-
mation, enhancing the model’s generalization to new data by avoiding
excessive dependencies on similar features. Moreover, it simplifies the
model, speeds up training, and reduces the risk of overfitting.

Fig. 6 presents the accuracy levels achieved by various classifiers in
the optimal approach for the Control vs. Pathological data group. From
this, it is possible to see that the classifier LDA achieved a little high
accuracy, reaching 73.9%. Furthermore, Fig. 7 provides visualizations
of a confusion matrix that illustrates the accuracy and misclassifications
of the LDA and an area under the ROC curve, demonstrating its ability
to discriminate between the control and pathological group data.

After gathering the outcomes from the machine learning techniques,
we will analyze and discuss these results to assess the effectiveness and

implications of the applied methods.
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Fig. 4. Violin plot illustrating the normalized distribution (by Z-score) of the values of the 20 top features from the LassoCV feature selector in each class: (a) p335, (b) p1448,
(c) p1270, (d) p708, (e) p31, (f) p1369, (g) p1102, (h) p172, (i) p1069, (j) p348, (k) p1437, (l) p1080, (m) p176, (n) p1452, (o) p710, (p) p28, (q) p247, (r) p1393, (s) p496,
(t) p1403.
Fig. 5. Heatmap comparison of top 20 features selected by two methods. Panel (A) illustrates features selected by the LassoCV feature selector, including p335, p1448, and p1270,
among others. Panel (B) shows features the RFE selector identifies, such as p98, p178, p343, etc. Each feature is represented in a heatmap format, indicating its relative importance
in the dataset according to each selection technique.
4. Discussion and conclusions

This study explores machine-learning techniques for classifying
glaucoma based on pupillary light reflex signals. Different approaches,
such as filtering, sample balancing, and feature extraction and selection
techniques were investigated.

4.1. Regarding filtering:

The statistical analysis in Table 3 indicated that refraining from
signal filtering generally yielded superior results, irrespective of the
other techniques implemented.

This finding was corroborated by the best accuracy analysis of
the whole signal in Table 8, highlighting that non-filtered signals
maintained their integrity and were more effective for classification.
12 
4.2. Feature extraction:

The statistical analysis in Table 4 yielded mixed results, varying
effectiveness based on the balancing and feature selection methods.

Nonetheless, the analysis of best accuracy in Table 8 suggested a
preference for utilizing the full range of signal diameters, hinting that
extensive feature extraction might not be necessary.

4.3. On sample balancing:

The oversampling technique significantly enhances classifier perfor-
mance when there is a substantial imbalance.
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Fig. 6. Comparative accuracies of classifiers for control vs. pathological group illustrated through a box plot of the most effective approach.
Fig. 7. Confusion Matrix (A) and ROC Curve (B) displaying the performance of the LDA in classifying the Control vs. Pathological Group using the optimal approach.
4.4. Feature selection:

The analyses reveal that the effectiveness of different feature se-
lection techniques varied, with no single method showing complete
dominance over the others. However, statistical analysis shows a slight
preference for Recursive Feature Elimination. Conversely, LassoCV is
the most effective strategy according to analysis by best accuracy.

Both analyses unanimously identified the SelectKBest method as
the least recommended. This likely occurs because SelectKBest is a
relatively simple technique that selects features based on individual
statistical tests. This method evaluates each feature independently,
without considering the interactions between them. On the other hand,
RFE and LassoCV account for these interactions, resulting in more
effective feature selection.

4.5. Cropping signal:

The analysis for the best accuracy using only the signal segment
corresponding to a specific stimulus color did not produce definitive
conclusions about which part of the signal is most critical, as shown in
Table 7. Experiments have shown that each stimulus color proved to
be more effective in different types of groupings.

The observed accuracies were slightly lower compared to the use
of the complete signal in almost all groupings. This suggests that using
13 
the complete signal may be more advantageous with the techniques
used, although the difference in performance was slight. The strategies
of not filtering the signal, avoiding feature extraction, and applying
oversampling balance remained the most effective. Traditional classi-
fier methods prevailed in performance, particularly emphasizing the
Extra Tree classifier.

4.6. Classifier analysis:

Traditional classifiers such as LDA, SVM, RD, and ET demonstrated
the best performance in the classification task covering all six studied
groupings, as detailed in Table 8. They maintained their effectiveness
without being surpassed by artificial neural network algorithms. It is
possible that neural network-based algorithms require more data to
achieve superior effectiveness.

The findings suggest that preserving the full spectrum of signal data
without filtering or feature extraction could be more advantageous for
classification. This is particularly true for our research database, which
likely has an acceptable noise level. We also observed the significant
impact of oversampling with SMOTE on enhancing the classifiers’
decision boundary delineation.

It was also observed, as expected, that classifying glaucoma in
its severe stages is relatively straightforward. However, identifying
glaucoma in its initial stages presents significant challenges.
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4.7. Practical recommendations:

After analyzing the machine learning techniques employed, our
recommendation is as follows:

When the noise levels are tolerable, unfiltered datasets can yield
better results.

Using all the diameters of the pupillary signal has proven to be more
effective for classification than extracting features commonly described
in the literature.

In cases of data imbalance, implement the oversampling technique
with SMOTE for balancing.

4.8. Limitations of the study:

Our database has a relatively small proportion of patients with mod-
erate and severe glaucoma. This limitation is mitigated by adequately
representing early glaucoma cases, which is crucial as pupillometry is
particularly useful in early-stage glaucoma screening.

The feature extraction approach may yield enhanced results by
discovering and including new features from the pupillary signal, in-
dicating potential for further research in this area.

Exploring additional feature selection techniques and evaluating
alternative data balancing strategies could further enhance the assess-
ment.

In terms of classification, while we tested key classifiers, exploring
other network architectures and fine-tuning hyperparameters could
lead to even better results.

4.9. Limitations of PLR evaluation:

Various studies on PLR-based diagnosis indicate its susceptibility
to factors like substances, other pathologies, and physiological condi-
tions such as sleep deprivation and stress. Isolating these variables in
glaucoma diagnosis remains a significant challenge.

5. Future work

After achieving satisfactory accuracy rates in glaucoma classifica-
tion using a protocol with relatively long periods of dark adaptation
(10 min) and recording time (4 min), the subsequent step is to ex-
plore the possibility of reducing these durations without compromising
high precision. This optimization would make the pupillary reflex
examination more efficient and practical for medical applications.

Currently, pupillometry relies on pupillometers for recording, essen-
tial for controlled stimulus and recording conditions in a light-shielded
environment. A significant advancement would be developing an ap-
plication that enables smartphone camera recordings, eliminating the
need for specialized equipment. Ideally, users in a dimly-lit environ-
ment would record their pupillary reflex at a controlled distance, like
arm’s length, aligning the phone at eye level. The app could then
analyze the recorded data to provide immediate screening results,
enhancing the procedure’s accessibility and convenience.

Another possible extension of this work would be the application
of multiview learning [54,55], which synthesizes various data views
to achieve more comprehensive data descriptions. Combining pupil-
lometry data with other clinical information, such as imaging exams,
laboratory results, and medical histories.
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ppendix A. Customized algorithm for signal filtering

This appendix section presents a pseudocode for a specially designed
lgorithm used in pupil signal filtering.
Algorithm 1: Signal filtering.

Result: Returns the filtered signal
max_variation ← 3;
repetitions ← 100;
filtered_signal ← signal_original;
if discontinuity(filtered_signal, FACTOR_OF_DISCONTINUITY) is True then

return filtered_signal;
else

for i ← 0 to repetitions do
foreach element in filtered_signal do

if element is not the last and element > -1 then
if difference(element, next element) > max_variation then

next element ← -1;
foreach subwindow in filtered_signal from next element do

if difference(element, subwindow) > max_variation then
next next element ← -1;

else
break;

end
end

end
end

end
if discontinuity(filtered_signal, FACTOR_OF_DISCONTINUITY) is True then

max_variation ← max_variation + 1;
filtered_signal ← signal_original;

else
break;

end
end
return filtered_signal;

end

Appendix B. The architecture of the neural networks

This section presents diagrams illustrating the architecture of three
neural networks utilized as classifiers in this study: a Fully Connected
Network (FCN), a One-Dimensional Convolutional Neural Network (1D-
CNN), and a Transformer Neural Network (see Figs. B.8–B.10).



H.M. Pinheiro et al. Array 23 (2024) 100359 
Fig. B.8. Fully Connected Neural Network (FCN) Classifier architecture.

Fig. B.9. One-Dimensional Convolutional Neural Network (1D-CNN) classifier
architecture.
15 
Fig. B.10. First head of the Transformer Neural Network (TRANS) classifier
architecture.
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