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Abstract—The echocardiogram (ECHO) is an ultrasound
of the heart used to diagnose heart diseases (DHC). The
analysis and interpretation of ECHO are dependent on the
doctor’s experience. However, software that uses artificial
intelligence to analyze ECHO images or videos is contributing
to support the physician’s decision. This paper aims to perform
a Systematic Literature Review (SLR) on artificial intelligence
(AI) techniques applied in the automation of Transthoracic
Echocardiogram (TTE) processes, to support medical decisions.
The study identified more than 800 articles on the topic in the
leading scientific research platforms. To select the most relevant
studies, inclusion and exclusion criteria were applied, where 45
articles were selected to compose the detailed study of the SRL.
The results obtained with the extraction of information from
the papers, identified 3 groups of primary studies, namely:
identification of the cardiac vision plan, analysis of cardiac
functions and detection of cardiac diseases. SRL identifies
that the set of Machine learning (ML) techniques are being
widely applied in the tasks of segmentation, detection and
classification of images obtained from ECHO. The techniques
based on Convolutional Neural Network (CNN), presented
the best Accuracy rates. Research shows a strong interest
in automating ECHO processes. However, it is still an open
research field, with the potential to generate many publications
for researchers.

Keywords-Echocardiogram, Ecocardiography, Machine
Learning, Deep Learning, Systematic Review

I. INTRODUCTION

The Progress in the analysis of ultrasound images has

always been fundamental to the advancement of research

with image-oriented diagnosis, because ultrasound provides

real-time image acquisitions [1]. The echocardiogram is not

very invasive and does not expose the patient to radiation.

ECHO analysis depends on the physician’s experience.

However, artificial intelligence is efficient in the practical

application of identification, quantification, and interpreta-

tion of TTE images. The use of ML models can reduce

image analysis time, optimize clinical decision-making, and

provide interactive feedback to train less experienced physi-

cians [2].

Although similar works are found in the literature inves-

tigating ML [3] or Deep Learning (DL) techniques applied

to medical images and cardiovascular images [4], [5]. They

use survey methodology, while this article presents a SRL.

This article aims to conduct a secondary study on AI

techniques applied to support medical decisions and process

automation at TTE. The specific objectives are: Search in

the leading scientific bases, studies of AI techniques applied

to TTE; Read the articles and create a mini-abstract of

each one; Group primary studies with similar objectives;

Categorize the mini-abstracts; Identify the state-of-the-art

when possible.

This paper is organized as follows. The SRL protocol

methodologies are presented in section II. The data extrac-

tion and the grouped mini-abstracts are presented in section

III; Finally, discussions and conclusions are presented in

sections IV and V.

II. MATERIALS AND METHODS

For Budgen et al. [6], the use of an SRL is mainly

intended to provide an impartial, objective, and systematic

approach to answering a research question by finding all

relevant research results from primary empirical studies. An

SRL is considered a secondary study. The SRL elaboration

follows the guidelines described by Kitchenham et al. [7]

being divided into three stages: Planning, Selection, and

Critical Analysis of the results.

A. Planning

1) Initially, an exploratory analysis of the literature was

performed to define the keywords and research sources. 2)

A search in the main scientific base of the health field

”Pubmed” using the terms: ”Echocardiogram OR Echocar-
diography”; 3) A Filter with the term ”Artificial intelligence”

was added. Thus, the articles indicate a trend towards an

AI sub-field ”Machine learning”; 4) The complete search

string was: ((Echocardiogram OR Echocardiography) AND

(”Machine learning” OR ”Deep Learning”)); 5) Finally, the
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articles were extracted from the main scientific bases: ACM

(Association for Computing Machinery), IEEE (Institute

of Electrical and Electronics Engineers), Science Direct,

PubMed, and Web Of Science. The search was restricted to

articles published in the last 5 years and written in English.

The following research questions guide SRL:

Q1) What are the best ML techniques applied to TTE to

support the medical decision?

Q2) What are the GAPs for the TTE sub-problems?

Q3) What are the most used techniques?

B. Selection

For the selection of articles, the protocol was prepared

according to the guidelines of Kitchenham et al. [8]. The

following Inclusion (I) and Exclusion (E) criteria were

defined:

I1) Articles that used AI techniques applied to TTE anal-

ysis.

I2) Articles that are complete and written in English.

E1) Articles that do not approach TTE.

E2) Articles that do not specify the AI technique used.

E3) Articles that do not perform experiments.

In figure 1, the SRL steps are presented with the results

returned using the search string. With the search on the

scientific bases, 854 articles were found, after reading the

titles and abstracts, 675 were discarded. Then, 179 remained,

and 61 repeated. Therefore, 118 were selected for complete

reading and data extraction. After full-reading, 73 articles

were excluded based on the exclusion criteria, and 45 articles

included in the SRL. It is important to emphasize that the

objective of the SRL is to analyze the articles that apply AI

techniques in TTE for medical support.

Figure 1. The Systematic Review Proces

In the III section, mini-abstracts of articles are presented,

classified by type of problem. In tables I,II, and III, the types

of problems are identified with a separator line.

III. MACHINE LEARNING APPLIED TO TTE

During the initial search on the Pubmed platform, it was

found that the most used AI techniques belong to the class

of ML methods and algorithms. ML is a subfield of AI.

Thus, we delimit the search to find articles that use ML

and DL techniques. After the readings and extractions of

the information, the works were categorized into groups and

sub-groups, where the papers were grouped into 4 categories.

Are the following: A) Cardiac vision image acquisition

Plan; B) Analysis of cardiac functions; C) Detection of

cardiac disease; Subgroups are presented when there is more

than one different subcategory belonging to a group. The

mini-abstracts are presented, ordered by techniques. Thus,

providing the reader with a quick preview of each sub-

problem.

A supplementary material with more information is avail-

able at: https://github.com/vilsonsoares/SRL-ML-TTE.

A. Cardiac Vision Image acquisition plan
For Balaji et al. [9], the automatic classification of cardiac

vision is the first step to automate the analysis of the

movement of the walls, the diagnosis of diseases aided by

computer, the calculation of the measurement, and others.

Table I
PAPERS: CARDIAC VISION IMAGE ACQUISITION PLAN

Id Ref Dim Task TL Techniques Metrics Precision

1 [9] 2D C SP SVM-BPNN Acc 0.875
2 [10] 2D C SP LC-KSVD Acc 0.950
3 [11] 2D C SP BoVW Acc 0.900
4 [12] 2D C SP CNN Acc 0.921
5 [13] 2D C SP CNN Acc 0.917

GAN 0.923
6 [14] 2D C SP/SSP

CNN
Acc

0.912
7 [15] 2D C SP/SSP CNN Acc 0.840
8 [16] 2D/3D C SP CNN Acc 0.983
9 [17] 3D C SP HF Acc 0.804

Legend: Reference (Ref), Dimension (Dim), Type learning (TL),
two-dimensional (2D), three-dimensional (3D), Supervised (SP),
Semi-Supervised (SSP), Classification Task (C), Accuracy (Acc).

Balaji et al. [9] proposed a fully automatic classification

of cardiac vision on echocardiogram. The system is built

based on a ML approach that featuring two resources 1)

Histogram features and 2) Statistical features. Classifiers

Suport Vector Machine (SVM) and Back Propagation Neural

Network (BPNN) were used.

Khamis et al. [10] presented a classification algorithm

that employs several stages in the spatio-temporal feature

extraction approaches, with Cuboid Detector and supervised

dictionary learning (LC-KSVD) to exclusively improve the

automatic recognition and accuracy of Cardiac Vision Clas-

sification.

The representations proposed by Penatti et al. [11] depend

on Bag-of-visual-words (BoVW), used successfully by the

computer vision community in problems of visual recogni-

tion. An essential element of the proposed representations

is the sampling of images with large regions, drastically

reducing the execution time of the image characterization

procedure. The experimental evaluation of the proposed
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approach compares different image descriptors to classify

four cardiac vision plans.

Madani et al. [13] used CNN to create a classification

model to identify the type of vision of the echocardiogram

examination; in their experiment, 15 types of examination

views were labeled. The accuracy of the correctness of

the model was 97.3% for 12 of them, and 91.7% for 15.

A specialist echocardiographer assessed the same inputs,

and the accuracy was 70.2–84.0% of correct answers. In

Madani et al. [14] General adversarial Network (GAN) and

CNN were used for the same views, and using Ensemble

managed to improve accuracy. Zhang et al [15] used CNN

to automatically determine 23 types of echocardiographic

image visualization. Gao et al. [12] incorporated spatial and

temporal information supported by video images of cardiac

movement and giving rise to two strands of the 2D CNN

system. The merger of both networks is conducted through

linear integration’s of the vectors of the class scores obtained

from each of the two networks.

[16] used CNNs to create classification models to predict

up to seven different cardiac visualizations. Among the

models tested, its proposed model called the Cardiac view

classification (CVC) network.

Zhu et al. [17] developed a framework with ML tech-

niques using the cardiac ultrasound guidelines to extract the

standard plan to determine the appropriate usage steps for

clinical 3D echocardiography exams. For this, the Hough

Forest (HF) technique was used. First, used for hierarchical

research and detection of 3D resource points. Second, the

initial plans were determined using anatomical regularities in

accordance with the guideline. Finally, it used the Regres-

sion Forest technique integrated with the plan’s regularity

constraints to apply each plan.

Details on the Cardiac Vision Image acquisition plan are

available in the supplementary material.

B. Analysis of Cardiac Functions
1) Left Ventricular Volume and Ejection Fraction:

According to Jafari et al. [19] the objective of the Left

Ventricular Ejection Fraction (LVEF) is one of the main

measures to assess the functionality of the heart, and cardiac

ultrasound ECHO is a standard imaging modality used for

perform the LVEF measurement.

Yuan et al. [18] developed a procedure that uses a simple

application of non-negative matrix factorization (NMF). A

series of frames from a single patient video. NMF Rank-

2 calculates the final two members. The final limbs are

shown as intimate representations of the actual morphology

of the heart, in the final phase of each cardiac function.

Besides, the entire temporal series can be represented as a

linear combination of these two states, providing a shallow

dimensional representation of the heart’s time dynamics.

Jafari et al. [19] presented a mobile app to estimate LVEF.

It runs in real-time on Android mobile devices that have a

Table II
ANALYSIS OF CARDIAC FUNCTIONS

Id Ref Dim Task TL Techniques Metrics

10 [18] 2D - S NMF r
11 [19] 2D SP S DFCN Acc
12 [20] 2D SP S DFCN DICE
13 [21] 2D SP S/C CNN μ
14 [22] 2D SP S CNN U-Net DICE
15 [23] 2D SP. C CNN U-Net r
16 [24] 2D SP S CNN U-Net Acc
17 [25] 2D SP R CNN, RNN μ
18 [26] 2D SP S PV-LVNet α-Cronbach
19 [27] 2D SP S RFC, DTC AUC
20 [28] 2D SP S RFC, DTC AUC
21 [29] 2D SP S SRF DICE
22 [30] 2D - - SR-DCL CD2, MI, SSD
23 [31] 2D SP S Bag-10 Acc
24 [32] 2D SP S/C CSM,CRP Acc
25 [33] 3D SP S Graph cut r
26 [34] 3D - S HeartModel B–Altman
27 [35] 3D SP S DFCN R2

28 [36] 3D SP S CNN, Snake R2

29 [37] 3D NSP R MSCDL e RF r
30 [38] 3D SP S ML-Algoritms r, B–Altman

31 [39] 3D SP S ML-Algoritms r
32 [40] 2D SP C DCNN Acc
33 [41] 2D+T SP C CNN Acc

Legend: Not Supervised (NSP), Regression task (R), Segmentation Task
(S), Segmentation and Classification task (S/C), Area Under a Curve
(AUC), Similarity Measure (CD2), Mutual Information (MI), Sum of
Squared Differences (SSD), Determination coefficient (R2), Correlation
(r), Mean (μ), Sørensen–Dice coefficient (DICE), Bland–Altman
(B–Altman).

wired or wireless connection to a point-of-care ultrasound

(POCUS) cardiac device. Your pipeline for estimating the

biplane Ejection Fraction (EF) using A2C and A4C views.

They used a multi-task and computationally efficient Deep

Fully Convolutional Network (DFCN) for simultaneous Left

Ventricular (LV) Segmentation and Detection of landmarks

in these views, which is integrated into the LVEF estimation

pipeline. The Article by Veni et al. [20] presents a new

framework that combines the benefits of DL approaches with

those of classic segmentation methods. The DFCN architec-

ture produces LV masks in a slightly different sequence of

images with the same region and visualization.

Raynald et al. [21] compare two complementary ap-

proaches to segmentation and automated classification of LV

position in 2D TTE sequences. The first approach is based

on the Handcraft feature phases for contrast and position.

The second follows the structure of CNN.

Leclerc et al. [22] performed an experiment comparing

the results of the CNN U-net model with SRF to segment

the epicardium and endocardium, in order to estimate the

EF and Global Longitudinal Deformation (GLD) in views

A2C and A4C. Leclerc et al. [23] experimented with several

CNN architectures. The U-net was better in aspects of

parameter numbers, performance, robustness in the evalu-

ation of 2D echocardiographic images. The results show

the specialized analysis of the volume of End Systolic (ES)
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and End Diastolic volumes (ED). Zyuzin et al. [24] used

the CNN U-net model to segment the heart’s LV using

TTE images. Dezaki et al. [25] formulated the problem of

locating frames of ED and ES as a regression problem.

Proposed several architectures based on DL that minimize a

novel global loss function. The proposed integrate the image

resource extraction model based on CNN’s (DenseNet and

ResNet) and Recurrent Neural Network (RNN)’s (long-short

term memory (LSTM), bidirectional LSTM, Gated recurrent

unit (GRU), and Bi-GRU) to model temporal dependencies

between each frame in a sequence. Finally, they compared

the performance of these models.

Ge et al. [26] proposed a model called Paired-Views

LV Network (PV-LVNet), its objective is to automatically

and directly estimate the indices of various types of LV

from paired TTE views A2C + A4C. Based on a newly

designed Circle Network, PV-LVNet robustly locates the LV

and automatically cuts the LV Region of Interest (ROI) from

the A2C and A4C sequence with the location module and

image resampling, and accurately estimates and consistency

7 different indexes of multiple dimensions (1D, 2D, and 3D)

and views (A2C, A4C, and union of A2C + A4C) with the

index module.

Bobkova et al. [28], carried out an initial work that was

expanded by Bobkova et al. [27], the authors defined the

LV segmentation task and reduced it to the problem of pixel

classification in video frames. A pixel can belong to one

of two classes (the background region or the LV region).

They applied several Classic algorithms of ML. The best

results came from the Random Forest (RFC) and Decision

Tree (DTC) Classifiers. Leclerc et al. [29], investigated an

ML solution based on the Structured Random Forest (SRF)

algorithm to fully automate myocardial and LV segmentation

in heterogeneous clinical data. With the competitive results

achieved, the authors believe that supervised learning may

be the key to the automatic segmentation of the heart.

Ouzir et al. [30], proposed a Sparse Representation and

Dictionary Learning (SR-DCL) method that combines a

measure of specific similarity with spatial smoothness and

sparse regularizations, jointly exploring the statistical nature

of the images obtained with the ModeB, the smoothness and

sparse properties of cardiac movement.

Zyuzin et al. [31] use various methods of ML to identify

the edges of the LV area in ultrasound images. They treated

the problem as a particular case of binary pixel classification.

Among them, the Bag-10 complex model demonstrated the

best classification result.

Belous et al. [32] proposed the Contextual shape models

(CSM) approach to automatically segment the LV, based

on the Dirichlet process mixture model (DPMM) with the

Chinese restaurant process (CRP), the approach classifies

LV function as Normal, Abnormal and Mixed (Normal +

Abnormal).

Bernier et al. [33] proposed a method for 3D segmentation

for the LV composed of 4 stages. 1) A 3D sampling of the

LV cavity is made based on a Bezier coordinate system. It

allows distorting an incoming 3D image into a Bezier space,

in which a plane corresponds to an anatomically plausible

3D Euclidean bullet shape. 3) 3D graph is constructed, and

an energy term (which is based on the image gradient and

a 3D probability map) is assigned to each end of the graph,

some of which receives infinite energy to ensure that the

resulting 3D structure passes in the main anatomical points.

3) A minimum, maximum flow cut procedure is performed

on the energy graph to outline the endocardial surface.

4) The resulting surface is projected back into Euclidean

space, where a convex hull algorithm for post-processing is

applied to each short-axis slice to remove local concavities.

In general, it obtained better results than state-of-the-art

methods for the SETUS echocardiographic dataset.
Narang et al. [34] demonstrated a new algorithm called

Philips HeartModel to perform the volumetric analysis and

segmentation of the atrium and LV functions. Comparing the

correlation between HeartModel, CMR, and TomTec. Time

reduction to generate the volume curve from (3.6 ± 0.9)
minutes to (35± 17) seconds.

Dong et al. [36] proposed a new fully automatic method,

combining the DL model and the deformable model. To

target the LV endocardium, they trained CNN to generate

a binary cuboid to locate the ROI. Then, using ROI as

an input, they trained a stacked Autoencoder Model to

infer the initial shape of the LV. Finally, they used the

Snake Model to infer the initial way to segment the LV

endocardium.Dong et al. [37] proposed a method combining

Multi-scale Convolutional Deep Learning (MSCDL) and

Random Forest (RF) for the segmentation of the LV in

3D. Where the first method extracts the features of the

unlabeled data, and the second is used for training to

perform the regression with the labeled data. Dong et al.

[35] proposed a new automatic method for LV segmentation,

based on DFCN and the deformable model. With the method

implemented the coarse-to-fine framework. 1) A new deep

fusion network based on transferring learning and fusing

resources, combining residual modules to achieve coarse LV

segmentation on 3D echocardiography. 2) They proposed

a geometric model initialization method for a deformable

model based on the coarse segmentation results. 3) The

deformable model was implemented to further optimize the

results of the Segmentation with a regularization item, to

avoid leakage between the left atrium and the LV, in order

to achieve the goal of fine LV segmentation.

Volpato et al. [38] proposed a new ML approach for 3D

echocardiography that allows automated determination of

LV mass. The objective was to assess the accuracy of the

approach, comparing it with the cardiac magnetic resonance

(CMR) reference and conventional 3DE volumetric analysis.

2) Right Ventricular Volume and Ejection Fraction :
Genovese et al. [39], tested the accuracy and reproducibility
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of a new fully automated software based on ML-based

3D quantification of the Right Ventricular (RV) size and

function. The ML-based 3D algorithm provided accurate

and completely reproducible measurements of RV and EF

volume in 1/3 of patients, with no editing of the image

limits. In the remaining patients, minimal and rapid editing

resulted in reasonably accurate measurements with excellent

reproducibility.
3) Myocardial Wall Motion: Kusunose et al. [40] trained

several models of DCNN to detect abnormalities in the

cardiac wall motion (CWM) regions. After training, they

compare the results of the models with the results of

specialists in cardiology. They noted that the difference in

the accuracy of the assessment was relatively small.

Omar et al. [41], proposed a structure for fully automated

image analysis to classify abnormalities in the myocardial

wall motion (MWM) in 2D + T images. They showed that

pre-processing raw videos with the asymmetric characteris-

tics method and feeding them with CNN of temporal space

achieves the best results for classifying myocardial wall

motion.

C. Detection of Cardiac Disease

Table III
DETECTION OF CARDIAC DISEASE

Id Ref Dim Task TL Techniques Metrics

34 [15] 2D SP C CNN Acc
35 [14] 2D SP/SSP C CNN, GAN Acc
36 [42] 3D SP C 3D-CNN Acc

37 [43] 2D SP C PSO, SVM Acc

38 [44] 2D SP C SVM,LDA Spe, Sen, Acc
39 [45] 2D SP S DCNN B-Altmann

40 [46] 2D SP D Faster R-CNN Acc
41 [47] 2D SP C SVM Ensemble r
42 [48] 2D/3D SP - Framework Acc, DICE

43 [49] 3D SP S HeartModel, 3DQ r
44 [50] 2D SP S/C SVM Acc
45 [51] 2D SP R CNN U-Net AUC

46 [52] 2D SP C TF-IDF C-Kappa

47 [53] 2D SP. R SVM AUC
Siglas: Cohen’s Kappa (C-Kappa), Specificity (spe), Sensibility (Sen).

1) Hypertrophy in the Left Ventricle: Zhang et al.

[15] used CNN to classify hypertrophic cardiomyopathy

(HCM), pulmonary arterial hypertension (PAH), and cardiac

amyloidosis (CAD). Silva et al. Madani et al. [14] used

supervised and semi-supervised models from DL to classify

LV hypertrophy (LVH) in Normal or Abnormal. For the

supervised model used CNN. For the semi-supervised model

used GANs. [42] presented a CNN 3D model to classify the

level of abnormality of LVEF. The LVEF was represented

with the following continuous values for each class, being

them 1) <45%, 2) 45% ≥ 55%, 3) 55% ≥ 75%, 4) >75%.
2) Congestive heart failure: Raghavendra et al. [43],

proposed an automated screening method to classify nor-

mal echocardiographic images and congestive heart failure

(CHF) affected due to dilated cardiomyopathy (DCM), using

resources extracted from the image decomposed in the

variational mode. These features are selected using particle

swarm optimization (PSO) and classified with SVM using

different kernel functions.

3) Mitral Valve Disease: Moghaddasi and Nourian [44]

used the SVM, Linear Discriminant Analysis (LDA), and

Template Matching (TM) techniques to classify the severity

of Mitral Regurgitation (MR) based on texture descriptors.

The SVM classifier using Extensive Uniform Local Bi-

nary Pattern (ELBPU) and Extensive Volume Local Binary

Pattern (EVLBP). EVLBP has the best accuracy for the

detection of mild and normal MR, moderate and severe MR

between echocardiography videos. Smistad et al. [45] used

the model CNN proposed by Ostivik et al. [16] to create a

program for real-time detection using streaming, to detect

the volume and Mitral Annular Plane Systolic Excursion

(MAPSE) of the heart.

4) Aortic Valve Disease: Nizar et al. [46] used a CNN

method, with the Faster R-CNN Inception V2 model, to

detect the aortic valve in real-time echocardiogram videos.

Pereira et al. [47] proposed a structure that uses ML methods

based on DL for the fully automated detection of Aortic

Coarctation (CoA) from 2D ultrasound clinical data, ac-

quired in the PLA, A4C and SSNA views. Khalil et al. [48]

proposed a 2D to 3D automatic registration framework for

the fusion of echocardiogram and Computed Tomography

(CT) data, specifically aiming to guide trans-catheter aortic

surgery (TAS). The technique simultaneously addresses the

problems of time synchronization and spatial alignment,

offering opportunities for new ways to display structural

and functional information composed from intraoperative

transthoracic echocardiography and preoperative CT data.

5) Atrium disease: Otani et al. [49] conducted a study

to determine the utility of the fully automated left-chamber

quantification software with 3D single-beat TTE data sets in

patients with Atrial Fibrillation (AF). His comparative study

proved that the automatic quantification method obtained

significantly less time than the manual method to perform

the analysis, requiring 5 minutes for the automatic analysis

and 27 minutes for the manual. Borkar and Annadate [50]

used an ROI method to extract the characteristics of the TTE

frame and classify SVM to automatically detect and classify,

dilated cardiomyopathy (DCM), defect atrial septal (DAS)

and Normal. Lu et al [51] proposed a new regression method

to identify abnormalities in echocardiogram B-Mode images.

They use CNN U-Net to automatically identify Normal and

Abnormal DCM cases.

6) Use of TTE Recommendation: Eisman et al. [52] cre-

ated an automated method based on rules for processing “in-

dications” listed in the TTE reports and classified them into

one of the main categories of Echocardiography Appropriate

Use Criteria (EAUC). It was developed and validated based

on a reference standard noted by the physician. The method

used was Term Frequency – Inverse Document Frequency
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(TF-IDF) widely used in Natural Language Processor (NLP)

and RF.

7) Cardiac resynchronization Therapy: Lei et al. [53]

sought to discover new analytical approaches to improve

the prediction of responses of Cardiac Resynchronization

Therapy (CRT) in the pre-implantation of pacemaker devices

in patients for the first time. The approach used the Three

ML algorithms (SVM, KNN, Random Subspaces) in a total

of 38 resource combinations. They understood that the

resources combined with Regularization Duration on QRS

ECG (QRSd)/ Relative wall Thickness (RWT) regularly

outperform the combinations without it. For each of the three

algorithms, the combination of triple features of QRSd/RWT,

Blockade of the left bundle of His bundle (LBBB), and

non-ischemic cardiomyopathy has repeatedly increased the

classification rate by more than 8%. The best result was the

SVM model.

IV. DISCUSSION

The echocardiogram analysis is dependent on the medical

experience. According to Sengupta and Adjeroh [54], the

recent interest in using artificial intelligence techniques,

such as ML, may offer a solution to reduce the doctor’s

workload, including repetitive and tedious tasks involved in

the diagnosis and analysis of patient data and images.

Studies indicate that the efforts of the research community

have advanced a lot concerning the automation of ECHO

processes. The DL techniques combined with the increase in

computational power in recent years have contributed signif-

icantly to increase the accuracy of the results of computer vi-

sion problems. They are capable of processing large amounts

of images. Although there are notable developments, there

is still a need to deepen the studies, to avoid results with

overfitting of the model, to reduce the computational time

to enable real-time evaluation, among others.

A. Answers to Research Questions

To answer the research questions, the data were extracted

from the articles and shown in the tables I, II and III.

”Q1 - What are the best ML techniques applied to
TTE to support the medical decision?”, in the analysis

of the articles, it was identified that the models based on

CNN were used in 42.2% of the studies and some present

accuracy greater than 95% to identify the cardiac vision

and to estimate ES and ED volume and LVEF. The results

are satisfactory for practical application. The application of

CNN-based models have excellent precision for detection,

segmentation, and classification of ECHO images.

In ”Q2 - What are the GAPs for the TTE sub-
problems?”, SRL highlights the following GAPs: opti-

mizing ECHO analysis time, reducing model complexity,

improving accuracy, a model that is able to evaluate all

ECHO processes, models capable of detecting a greater

number of cardiac diseases, application of Reinforcement

Learning techniques, and dataset public for detecting cardiac

disease. It is noted that the automation of ECHO analysis

has great potential for further research.

In ”Q3 - What are the most used techniques?”, the

most used techniques are SVM, Random Forest and CNN

based models.

B. Analysis of results

The information extracted from the 45 articles of SRL,

identified that the plan of acquisition of Image of Cardiac

Vision contains 20% articles. Different approaches and prob-

lem complexity were presented. The article by Zhang et al.

[15] addressed the classification of 23 types of views, with

84% accuracy; In the work of Madani et al. [13], 15 types

of visualization with an accuracy of 91.7% were classified.

Ostvik et al. [16] obtained an accuracy of 98.3% in the

classification of 7 types of visualization. It is essential to

highlight that all used CNN models for classification.

In addition to identifying the Cardiac Vision Image acqui-

sition plan, the work of Madani et al. [14] classifies LVH

and Ostvik et al. [16] proposed the detection of MAPSE.

The subsection Analyses of Cardiac functions have

51.11% of the articles of the SRL. The automation of

left ventricular segmentation, detection of myocardial walls

motion to estimate LV volume and ejection fraction, can

reduce the physician’s work with manual routines. Thus, he

can serve more patients. In the opinion of Kuronose et al.

[40], echocardiographic assessment in artificial intelligence

may not be necessary for specialists; however, a quantitative

assessment is an advantage of artificial intelligence. For

Dong et al. [37] estimation of LV volumes from 3D echocar-

diography - (3DE) is a simplified clinical approach in the

accurate assessment of LV function for the diagnosis of heart

disease. On the other hand, Genovese et al. [39] emphasizes

that 3DE allows accurate and reproducible measurements

of RV size and function. However, the implementation of

3DE in routine clinical practice is limited because existing

software packages are relatively time-consuming and require

skills. In the same direction, Volpato et al. [38] points

out that, although 3DE circumvents many limitations of

2D echocardiography, allowing direct measurements of LV

mass. It is rarely used in clinical practice due to lengthy

analyzes. Based on the results, it is observed that there

are strong indications that the challenges for the automated

analysis of the echocardiogram are related to the creation of

optimized models capable of providing analyzes, usability,

and precision in real-time.

Detection of Cardiac Disease represent 28.89% of the

articles. Cardiovascular disease is one of the most unre-

strained causes of death worldwide and was considered to

be one of the main diseases in the ”Middle Ages” and the

”Advanced Age” [55]. The following studies were identified

that address the tasks of classification of heart diseases: Hy-

pertrophy in the Left Ventricle [14], [15], [42]; Congestive
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Heart Failure [43]; Mitral Regurgitation [44]; MAPSE [45];

dilated cardiomyopathy [51]; Atrial fibrillation [49]. The

articles performed detection tasks for the aortic valve [46];

Coarctation of the aorta (CoA) [47]; Transcatheter Aortic

surgery [48], Cardiac resynchronization Therapy [53].

Only 2 public datasets were cited in the work of this SRL,

CETUS (Challenge on Endocardial Three-dimensional Ul-

trasound Segmentation) [33] and CAMUS (Cardiac Acqui-

sitions for Multi-structure Ultrasound Segmentation) [23].

Both have the purpose of segmenting the LV and estimating

the ES and ED volume and EF.

V. CONCLUSION

The purpose of this SRL was to conduct a thorough

analysis of the research advances related to the use of ML

techniques applied to the TTE, to group the tasks, and to

know the state-of-the-art.

DL methods may be the key to a successful automatization

of the echocardiogram processes. The results presented in

this SRL show that in the last 5 years, there have been

significant advances in TTE. In I) identification of the

plans of cardiac vision; II) Identification, segmentation and

quantification of cardiac functions; and III) Classification of

heart disease. The results show that the accuracy needs to

be improved.

Therefore, it is possible to conclude that the researches

on this topic still demand optimized software that can be

used in real-time. It is noteworthy that the field is open and

may have many research opportunities. Thus, it deserves

the attention of researchers, so that research leads to the

continuous improvement of the quality of the exam, thus

providing better results for patients and doctors.
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