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Abstract—Huntington’s Disease (HD) is a genetic disorder
that causes the progressive breakdown of nerve cells in the
brain, reducing an individual’s ability to reason, walk, and
speak. Due to its severity, new approaches are important for
the development of methods that contribute to the correct
classification of this disease. In this paper, we propose an
automatic method for diagnosing Huntington’s Disease using gait
dynamics information. Our approach is divided into a four-stage
pipeline: preprocessing, feature extraction, classification, and
diagnosis output. We evaluate the performance of our proposed
method through well-known classifiers that are commonly used
in machine learning problems. A publicly available database on
Gait Dynamics in Neuro-Degenerative Disease is used, and the
experimental results show that both Support Vector Machines
(SVM) and Decision Tree (DT) were able to achieve an average
accuracy of 100:0%, representing an improvement in the field.

Index Terms—automatic diagnosis, Huntington’s disease, ma-
chine learning, gait dynamics.

I. INTRODUCTION

Genetic diseases result from mutations or abnormalities on

chromosomes or genes, resulting in a clustering of different

symptoms, from psychiatric disorders to several brain damage.

Huntington’s Disease (HD) is one of those genetic pathologies

that causes the progressive breakdown of nerve cells in the

brain, reduces the individual’s ability to reason, walk and

speak, and it is referred to as a fatal genetic disorder which

manifests as a triad of motor, cognitive, and psychiatric

symptoms which begin insidiously and progress over many

years, until the death of the individual [1].

Since HD greatly affects the behavioral control system,

which includes the body movement, the use of this information

can help the task of identifying and also classifying individuals

who suffer from this disease. In fact, it has been previously

shown that some neurological diseases present increased fluc-

tuation magnitude as well as an altered fluctuation dynamics

[2]. Thus, the design of temporal parameters provides assis-

tance in this task, supporting a way to deal with an automated

classification problem as in [3], [4]. An unsteady gait, for

instance, shows a pattern that differentiates a person who has

a genetic disorder from a person who does not. In previous

studies, this observation has been used satisfactorily to classify

neurodegenerative diseases [5], or even to distinguish them

from healthy people [6].

Well-known machine learning algorithms as Support Vector

Machines (SVM), Decision Trees (DT) and Naive Bayes (NB)

classifier are often used in pattern genetic disorder recognition

in order to extract knowledge from data and to identify

common behavior settings. In such proposals, a crucial point

is related to the feature extraction which may influence the

"learning" stage and, consequently, the assertiveness of the

classifiers. Thus, a suitable feature extraction enforces the

selection of appropriated descriptors and models can be better

designed based on them.

Besides, noisy data disturbs the capability of built models to

perform a correct classification, which requires inspection and

prior analysis of the data. In general, it is treated by outlier

detection strategies in order to identify extreme values that

deviate from other observations or even guide in removing

anomalies which raise suspicions, i.e., which differ signifi-

cantly from a given set of data.

In our proposal, we identified noise observations by apply-

ing a median filter to replace the detected noise data points

that were 3 standard deviations greater than or less than the

median value. Furthermore, we investigate the effectiveness

of two features, Coefficient of Variation (CV) and Fractal

Scaling Index (α), in temporal series that were recorded from

gait signals using force-sensitive resistors. The first one is

obtained from the mean (μ) and standard deviation (σ) of each
time series, while the second one reveals the extent of long-

range correlations in time series based on statistical analysis

fluctuation. The proposed outlier detection and the feature

extraction technique are used to perform a binary classification

between a subject with Huntington’s Disease and a control

subject.

In this paper, we propose an automatic method for the

diagnosis of Huntington’s Disease using the information from

gait dynamics, and we evaluate the performance of five well-

known classifiers [7], [8] (Support Vector Machines (SVM), K-

Nearest Neighbors (KNN), Naive Bayes (NB), Linear Discrim-

inant Analysis (LDA) and Decision Tree(DT)) in accurately

classifying gait signals from an unknown subject under con-

sideration as being from a subject suffering with Huntington’s

Disease or being from a healthy subject.

The remaining of this paper is as follows. Section II presents

some studies that are related to this paper. In Section III,
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we describe the proposed method, which includes the data

description and preprocessing, feature extraction, and details

of the classifications performed. Results are showed in Section

IV, followed by our conclusions in Section V.

II. RELATED WORK

The analysis of gait variables of neurodegenerative diseases

has been widely performed. Here, we review some of the

studies that are related to this paper.

Hausdorff et al. [9] hypothesized that the stride-interval

correlations would be altered by changes in neurological

function associated with aging and certain disease states,

and they tested their hypothesis with control subjects and

subjects with Huntington’s Disease. In their findings, they

state that the scaling exponent, obtained after performing a

detrended fluctuation analysis, was smaller in the subjects with

Huntington’s disease compared with disease-free controls.

In a later study, Hausorff et al. [2] analysed subjects with

Amyotrophic Lateral Sclerosis (ALS) and found that the gait

of patients with ALS is less steady and more temporally dis-

organized compared with that of healthy subjects. Moreover,

they have also found that ALS, as well as Parkinson’s Disease

and Huntington’s Disease, presented an increased stride-to-

stride variability compared to healthy control subjects. Other

authors, such as Tafazzoli et al. [10] and Joshi et al. [11]

explored the problem of diagnosing other neurodegenerative

diseases using gait information.

When it comes to automatic methods for the classification

of Huntington’s Disease using gait signals, some progress has

been made. Zeng and Wang [3] used deterministic learning

theory to perform a binary classification that distinguishes data

from subjects with Huntington’s disease and control subjects.

Their approach consists of using all data points from the left

and right swing interval, and left and right stance interval

from each subject as input to the Radial Basis Function (RBF)

classifier, leading to an average accuracy of 83.3%.

Baratin et al. [12] used Discrete Wavelet Transform, ex-

tracting two features from each of the seven levels of decom-

position performed, and then feeding it to a Support Vector

Machine (SVM), resulting on the improvement of accuracy to

86.1%. Later on, Gupta et al. [13] used the mutual information

criterion to select the most essential features, in a total of

500, from a given dataset, which were used to construct

a decision tree classifier, leading to an accuracy of 88.5%.

Genetic algorithm to perform feature selection was done by

Daliri [6], which was left with 12 features that were then

fed to a support vector machine classifier, achieving 90.3%
of accuracy.

In our approach, we used data signal obtained from force-

sensitive resistors placed in each subject’s shoe and collected

as they walked. We perform a feature extraction based on

metrics of fluctuation magnitude and fluctuation dynamics,

leading to a simple feature vector of size two as input for

the classifiers. Our results showed that the method proposed is

effective, being able to achieve an average accuracy of 100.0%
for both support vector machine and decision tree classifiers.

III. PROPOSED METHOD

This paper proposes an automated method for identifying

Huntington’s Disease using information obtained from gait

dynamics. In our method, given a time series signal extracted

from the gait of a subject, it goes through preprocessing and

feature extraction, leading to a feature vector that serves as

input to a classifier that outputs the diagnosis, that is, whether

the signal belongs to a subject that has Huntington’s Disease

or not. The general structure of the proposed method is shown

in Figure 1, and an explanation of each step follows, starting

with the description of the input data.

Preprocessing

Feature
Extraction

Classification
Diagnosis
Output

Figure 1: Outline of the proposed method.

A. Dataset Description

We used the publicly available database on Gait Dynamics

in Neuro-Degenerative Disease provided by Hausdorff et al.

[2], [9] and available online on the web page of Physionet [14].
It consists of a collection of different gait cycle parameters

collected using force-sensitive resistors placed in the subject’s

shoe. Each subject was requested to walk for 5 minutes at

their usual pace along a 77m hallway. In total, there are 20 (6

males / 11 females) records from patients with Huntington’s

disease (HD) and 16 (2 males / 14 females) records from

healthy control subjects (CO).

From these force-sensitive resistors, three time series could

be derived from each foot (left/right), corresponding to differ-

ent phases of the gait: stride interval (the time elapsed between

the first contact of two consecutive footsteps of the same foot),

swing interval (time during which the foot is in the air), and

stance interval (the phase during which the foot remains in

contact with the ground). Moreover, another time series could

be obtained based on information taken from both sensors:

the double support interval (time during which both feet are

in contact with the ground). An example of the left and right

stance interval time series from a subject with HD and the

corresponding ones derived from a healthy subject is show in

Figure 2.

From each subject that participated in the study, the age,

height (m), weight (kg), gender, and the mean gait speed (m/s)

have been recorded. This information are displayed in Table

I, where μ stands for the mean and SE stands for the standard

error of the mean, calculated as σ/
√
n, where σ is the standard

deviation and n is the total number of observations.

B. Data preprocessing

In order to remove some start-up effects associated with the

moment the participants of the experiment began to walk in
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(a) Subject with Huntington’s Disease. (b) Healthy subject.

Figure 2: An example of time series of stance intervals derived

from the left and right foot from participants with Huntington’s

Disease (Figure 2a) and from a control subject (Figure 2b).

Table I: Statistical data from Huntington’s Disease (HD) and

Control (CO) subjects.

Group Age Height Weight Gait Speed
(years) (m) (kg) (m/s)

μ SE μ SE μ SE μ SE

HD 47 3 1.83 0.02 72.1 3.7 1.15 0.08
CO 39 4 1.83 0.02 66.8 2.7 1.35 0.04

the hallway, the first 20s of the recorded data from each one

of the subjects were removed. Noise observations, mainly due

to turnarounds that were occasionally needed, were identified

by applying a median filter. To do so, for each time series, we

calculated its median value. Then, all data points that were

three standard deviations greater than or less than the median

value were replaced by the median value of the corresponding

time series. Figure 3 shows before and after the application of

this process on the right stride interval series of a subject with

HD. The red dots in Figure 3a are the points that matched

the criteria of the median filter and were identified as outliers.

After their values were replaced for the median value of the

series, the corresponding time series presented in Figure 3b

was generated.

C. Feature Extraction

Previous studies have shown that, in healthy adults, the

fluctuation magnitude is relatively small [2], [9]. In adults with

certain types of neurological diseases, however, the fluctuation

magnitude and the fluctuation dynamics are, in general, altered

[9], [15]. Therefore, measures of fluctuation of magnitude

(stride-to-stride variability), such as the coefficient of variation

(CV), as well as metrics of of fluctuation dynamics (how the

stride time changes from one stride to the next), such as the

fractal scaling index α, have great potential of differentiating

healthy subjects from those suffering from some types of

(a) Original right stride interval time series.

(b) Right stride interval time series after preprocessing.

Figure 3: Before (a) and after (b) applying the median filter

on the right stride time series from a subject suffering with

Huntington’s Disease.

neurodegenerative disorder, including Huntington’s Disease

[2], [9], [16].

Having that in mind, we were interested in verifying the

effectiveness of these two features alone – CV and α – in

performing a binary classification between a subject with

Huntington’s Disease and a control subject. The first feature,

the coefficient of variation (CV), is a measure of the magnitude

of stride-to-stride variability and gait unsteadiness. It can be

determined by calculating 100 × (σ/μ), where μ stands for

the mean and σ stands for the standard deviation of each time

series from each subject.

Using Detrended Fluctuation Analysis (DFA), we computed

the second feature, the fractal scaling index α, which is a

measure of the degree to which one stride interval is correlated

with previous and subsequent intervals of different time scales.

The DFA method [17] is performed as follows. First, the time

series to be analyze (with N samples) is integrated. Then, the

integrated time series is divided into windows of equal length

n – that is, each window considers n strides. In each window,

a least squares line is fit to the data, representing the trend in

that window. Considering that the y coordinate of the straight

line segments is denoted by yn(k), then, for each window,

the integrated time series y(k) is detrended by subtracting the

local trend, yn(k). Next, the root-mean-square fluctuation of

this integrated and detrended time series is then calculated by

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]
2
.
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The detrending process, followed by fluctuation measure-

ment, is repeated over a range of different window sizes n.
Then, a log-log graph of F (n) against n is constructed, and

the slope of least-square regression line fit to this graph is

calculated to be the scaling exponent α. It has been shown

that the region of 10 ≤ n ≤ 20 provides a statistically robust

estimate of stride time correlation properties despite the length

of data [9], [18], and thereupon this same range was used here.

Therefore, each time series was finally represented by the

coefficient of variation (CV) and its fractal scale index α,
making up a feature set of size two, consisted of two numerical

values, later used to feed each of the five classifiers.

D. Classification

In machine learning problems, some classifiers such as

Support Vector Machine (SVM) [19], K-Nearest Neighbors

(KNN) [20], Naive Bayes (NB) [21], Linear Discriminant

Analysis (LDA) [22] and Decision Trees (DT) [23] are of-

ten employed. In this paper, these well-known and afore-

mentioned classifiers are used and a comparison of their

accuracy performance is made, showing which ones get the

best assertiveness. For the SVM classifier, we used a linear

kernel; the Euclidean distance was used as metric for KNN.

Performance validation was carried out using the leave-one-

out cross-validation (LOOCV) method [24], a fairly common

technique applied in machine learning experiments to estimate

generalization error. In every run, one sample was removed

from the training data at a time for testing. Our reported

classification accuracies represent the average accuracies on

the test sets. All experimentation code to perform classification

was developed using MATLAB R2017a using Statistics and

Machine Learning Toolbox.

IV. RESULTS

Table II and Table III present the average classification

accuracies of our method, along with its standard error of

the mean (SE), of the five classifiers (SVM, KNN, NB, LDA

and DT). In Table II, the results consider features extracted

from the left and right foot gait parameters. The results show

that, when using parameters derived from the left stride, left

swing and left stance interval, overall classification accuracies

of 94.4%, 83.3%, and 94.4% were obtained, respectively. On

the other hand, the highest average accuracy when right stride

and right swing parameters were used turned out to be 97.2%,

91.7%, respectively, while right stance parameters produced

an average of 100.0% accuracy.

When double support interval parameters were considered

(see Table III), the best overall accuracy achieved was 94.4%
when either KNN, NB or DT was used as a classifier. When

observing all gait variables presented in Table II and Table

III, the right stance interval is the one that stands out, for it

produced the highest average accuracy for both SVM, KNN

and DT (100.0%, 97.2%, and 100.0%, respectively). Linear

Discriminant Analysis’ highest accuracy was 83.3%, and it

was obtained when left stride or left stance signals were

used, while NB’s highest accuracy obtained was 94.4% when

Table II: Average classification accuracies when considering

left and right foot parameters.

Classifier

Left Foot Rigth Foot

Stride Swing Stance Stride Swing Stance

μ SE μ SE μ SE μ SE μ SE μ SE
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

SVM 91.7 4.7 83.3 6.3 91.7 4.7 94.4 3.9 88.9 5.3 100.0 0.0

KNN 94.4 3.9 77.8 7.0 80.6 6.7 94.4 3.9 88.9 5.3 97.2 2.8

NB 86.1 5.8 83.3 6.3 86.1 5.8 86.1 5.8 91.7 4.7 91.7 4.7

LDA 83.3 6.3 80.6 6.7 83.3 6.3 80.6 6.7 83.3 6.3 80.6 6.7

DT 88.9 5.3 77.8 7.0 94.4 3.9 97.2 2.8 86.1 5.8 100.0 0.0

Table III: Average classification accuracy when considering

double support interval parameters.

Classifier
Double Support

μ SE
(%) (%)

SVM 80.6 6.7
KNN 94.4 3.9
NB 94.4 3.9
LDA 58.3 8.3
DT 94.4 3.9

features extracted from the double support signal was taken

as input to the classifier.

To better analyse each classifier’s best performance, we con-

structed a confusion matrix, presented in Table IV, considering

the case where each classifier achieves its highest average

accuracy. We can observe that SVM and DT were able to

correctly classify all data from both Huntington’s Disease and

Control classes. KNN has mistakenly classified one subject as

being healthy when, in fact, it should be classified as HD. NB

confused exactly one HD subject as being from CO, and vice-

versa. On the other hand, LDA is the classifier that presented

greater confusion, wrongly classifying 5 HD subjects as being

healthy and 1 CO subject as having the disease. A summary

of our results is presented in Table V. If compared to other

results that classifies HD subjects from healthy subjects, such

as the ones that mentioned in Section II, our method presented

greater assertiveness for some of the classifiers, and was even

able to achieve no error at all for SVM and DT, reaching the

accuracy of 100%.

V. CONCLUSIONS

In this paper, an automatic method for identifying Hunting-

ton’s disease using gait dynamics was presented. Our proposal

considered the fluctuations caused by neurological disorders in

order to identify repetitive patterns that conduct to the correct

disease classification. Divided into four major steps, the pro-

posed method deals with noisy data through outlier detection

and rejection at a preprocessing stage. It presents a feature

extraction approach based on the Coefficient of Variation

and the Fractal Scaling Index. Moreover, it uses well-known
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Table IV: Classifiers confusion matrices.

Predicted

SVM KNN NB LDA DT

E
x
p
ec
te
d HD CO HD CO HD CO HD CO HD CO

HD 20 0 HD 19 1 HD 19 1 HD 15 5 HD 20 0
CO 0 16 CO 0 16 CO 1 15 CO 1 15 CO 0 16

Table V: Summary of classification accuracies achieved by

each of the five classifiers analyzed in this paper.

Classifier LDA NB KNN SVM DT

Accuracy 83.3% 94.4% 97.2% 100.0% 100.0%

machine learning classifiers to perform a binary classification

that indicates whether a person has the investigated genetic

disorder or not. Then, in the last stage, the results that were

obtained are presented and evaluated.

In the experimental design, three parameters of the gait

were considered individually from the left and right foot:

stride, swing and stance intervals. The results showed a

high assertiveness for these variables as well as for the five

classifiers used (SVM, KNN, NB, LDA, DT), where each of

them achievied more than 80% of accuracy. KNN worked well

with the left and right foot stride interval, achieving 94.4%
of accuracy. Moreover, SVM and DT reached an impressive

100% accuracy when considering the right foot stance interval.

The method proposed here represents an improvement on

previous results that can be found in the literature, and the

reduced feature vector size used in our approach, of size two,

adds to the novelty of our work, which provides a simple but

efficient method for identifying Huntington’s Disease using

gait dynamics.
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