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Abstract—In this work, we propose a simple but an effective
technique to adjust a disparity map in a more appropriate
configuration. This proposal consists of three main steps: seg-
mentation process, statistical analysis and by using adaptive
weighted windows. Furthermore, we investigate if a disparity
map, yielded by a robust stereo method, can be improved by the
proposed methodology. Thus, we implement some stereo vision
methods to compare. The experimental results show that the
proposed method is efficient and it can make some enhancements
in disparity maps, as reducing the disparity error measure.

Keywords: stereo vision, image segmentation, adaptive support
window, disparity map, map adjustment, disparity methods.

I. INTRODUCTION

In stereo vision systems, most algorithms are organized
in four steps: (1) matching cost, (2) cost aggregation, (3)
disparity selection and (4) disparity refinement. This pipeline
was pointed out by [1] and a lot of work has been done based
on it.

Our study focuses on step 4 of the pipeline, which is the
disparity refinement. In this work, we propose a simple but
an effective technique to adjust a disparity map in a more
appropriate configuration. It is based on an assumption that
disparity map regions carries helpful information. As a set of
disparity are allocated in a region, the disparity with more
frequency, i.e, the disparity that mostly appears in a region,
indicates the correct one. Hence, other disparities in that region
can be discarded. The next step is to find the disparity of these
points. To do that a weighted function is performed for this
task.

This proposal consists of three main steps. Firstly, a seg-
mentation process is applied to correlate similar points and, in
this way, to distinguish non-equivalent points, each one in its
own segment. Secondly, for each segment, a statistical analysis
is performed and the values returned by a mode function are
used to remove wrong disparities. Finally, to fill the disparity
map in, a plausibility given by a adaptive weighted window
is used to replace unknown disparities.

As this strategy uses the weighted window technique, we
investigate if it can improve results provided by stereo vision
methods that also use this technique. Thus, we implemented
some stereo methods and we took their outputs as a raw
disparity map to be improved by the proposed methodology.

By performing an evaluation, we can observe that this
method can improve disparity maps substantially. Even maps
with a good accuracy can be enhanced by this method.
In addition, we pointed out that although this proposal is

presented in the context of local approaches, it can also be
applied in global strategies in the same way.
The remainder of the paper is organized as follows. After

briefly reviewing closely related work in Section II, we show
a overview of the technique proposed and we describe our
algorithm for adjusting a disparity map in Section III. The
experimental results and analysis are given in Section IV and
Section V concludes the paper.

II. RELATED WORK

In local stereo methods, an aggregating window is used
to calculate the similarity among points by considering a
neighborhood region. They consider the entire set of pixels
associated with image regions that may be square or rectan-
gular and may be fixed or adaptive in size [2].
This surrounding pixels area is commonly referred to as

support or aggregating window and it is applied to get better
results mainly in uniform areas. When each point of the
support has a value that shows its strength, we are talking
about support weighted functions.
By considering that points in a window have different

influencies, a support weighted function is performed to model
this behavior. Yoon and Kweon [3] have started this analysis
and they showed that photometric and geometric constraints
can be applied to identify each weight.
In compare with other local methodologies, a disparity map

can be prepared with high accuracy through support weighted
windows. This is because a color and space proximity can em-
phasize similar regions, consequently improving the matching
cost step.
Laureano and Paiva [4] proposed a method based on support

weighted window. In their approach a multi-resolution analysis
is performed, thus the matching cost procedure is applied in
each pyrimid level and its result is propagated for the other
levels. This method deals in particular with textureless regions.
Rhemann et al. [5] considered a guided filter to define

the weights of the support. Their method shares the edge-
preserving property with the joint bilateral filter and because
of that it achieves great results.
Gerrits and Bekaert [6] focused in outlier rejection during

the aggregation step. Their method uses a segmentation pro-
cess and based on that it suggests a weight for each point
that lie in the same segment of the window’s center pixel and
another weight for points outside of the segment of the central
pixel.
Hosni et al. [7] investigated the support weighted window

by performing some analyses and by comparing different
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approaches. One of their conclusion is that spatial constraint
can be omitted when the weights are being calculated and this
approach make very little difference on the quality of results.

In this brief section, some support weighted methods were
pointed out. We use them to perform an evaluation that
analysis the performance of the proposed method. Thus, for
do that, we use our own implementation of these methods.

III. PROPOSED APPROACH

We start by analysing a raw disparity map. Fig. 1 shows a
map that is very noisy in some parts of it. It was made by a
simple cost aggregating (CA) methodology that can be called
as fixed window (FW) method. It is the simplest CA strategy
that uses an aggregating window and it is at the foundation
of stereo vision systems. Besides, this map was also yielded
by using a simple cost function that is the sum of absolute
differences (SAD).

(a) (b)

Fig. 1: Disparity maps: (a) a raw map and (b) a ground truth
map.

Fig. 1a illustrates a region that has a group of wrong
disparities. Similar pixels coexist in this area and because of
that, FW method fails in a lot of points. However, when we
analyse these disparities we can see that most of the values
are pointing to a correct one. Fig. 2 shows an histogram plot
which confirms our analyse by comparing this map region with
the same region in the reference map (ground truth), Fig. 1b.

(a) (b)

Fig. 2: Map analysis: (a) disparity map regions and (b) related
histograms.

In this way, if in a certain region a disparity method hits
more than fails, we can use it. Unfortunately, it is something
that we don’t know because the correct disparity is still
unknown. But if we believe in it, we can propagate this
supposed correct value even knowing that this is not true all
the time. Our methodology starts with this belief.

To identify a region, a segmentation technique may be used.
In stereo vision systems, mean shift algorithm [8] is widely
employed. It was used to obtain great results in [6], [9] and
[10]. We use it to apply a segmentation in the reference image.
When we obtain these segments we use them to localize
regions in the disparity map. Fig. 3 shows a segmented image

and its corresponding disparity map labeled based on these
segments.

(a) (b)

Fig. 3: Image segmentation: (a) reference image and (b)
disparity map.

After that, the method calculates the most common value
for each segment. It is a simple equation that is show in Eq.
1. For each segment S with the identifier i into the disparity
map D, (Si ⊂ D), it calculates the mode of all n segments
and the results are stored in m.

mi = mode common value in Sn
i=1 (1)

Moreover, each point of the disparity map that belongs a
certain segment is evaluated, accordingly with the previous
mode contability. In Eq. 2, a disparity value in D with the
coordinates (x, y) is tested. In case of this value is in a range
test, the mode value m is assigned for this point. Otherwise, it
is assigned with 0 that represents a unknown disparity. In this
equation, t is a threshould defined by a user that is used to
approximate disparity values to the segment’s mode. Besides,
it considers that each disparity value is in a segment S with
the identifier i.

D(x, y) =

{
mi if D(x, y)∈{Si} ∈ [mi − t,mi + t],

0 otherwise
(2)

When applying the above equations, a disparity map is
returned. At this time, disparities that are far away from their
segment mode value are considered as unknown. The next
step consists of filling these holes in, so a weighted filter is
prepared to evaluate the plausibility of each possible disparity.

Yoon and Kweon [3] introduced a support weighted win-
dow to be applied in the stereo matching problem. Their
methodology considers the color similarity between points
and their space distance. A window is defined and a point
located in the middle of this window is the principal point. The
surrounding neighbors are compared with the principal point
by calculating their difference of colors and their geometric
distance. This strategy was used in [11], [12], [4] among others
and investigated in [7].

The color proximity constraint between a principal point p
and its neighbor point n within a support is given by:

fc(Δcpn) = e−
Δcpn

γc (3)

The color distance Δcpn represents the Euclidean distance
between the colors of p and n in an image I as
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Δcpn =

√ ∑
j∈r,g,b

(Ij(p)− Ij(n))2 (4)

In the same way, spatial proximity constraint is evaluated
accordingly to:

fs(Δspn) = e−
Δspn

γs (5)

the spatial distance Δspn represents the Euclidean distance
between the coordinates (x, y) of p and n as

Δspn =
√
(px − nx)2 + (py − ny)2 (6)

γc and γs refer to a constant of color similarity and
a constant to adjust the spatial distance term, respectively.
fc(Δcpn) and fs(Δspn) represent the strength of grouping
by color similarity and by proximity.

Color and spatial constraints are combined and the final
support weighted window is given by

W (p, n) = e−(
Δcpn

γc +
Δspn

γs ) (7)

In our method, we use the support weighted window with
an adaptation. It is only applied in unknown disparities so a
principal point in a window is a point o disparity that we
want to discovery. Each neighboring pixel that has a disparity
value is evaluated according to the previous equations. Thus,
the weights of each pixel that are in the same disparity are
accumulated. Fig. 4 helps in the explanation.

Fig. 4: Points in a disparity map D have their own weight w.
Each segment is painted didactically (in red, green and blue).
Weights in D1, D2 and D3 are summed separately. The best
value is used to set the disparity in the principal point p.

Based on the color reference image, the photometric and
geometric constraints are calculated and each point of the
window has a weight w. Besides the weights, we know some
disparities. In Fig. 4, each color represents a known disparity,
except for a white color point that represents an unknown
disparity and because of that these points don’t have a weight
w. Thus, the computed weights that are in the same disparity
are summed up as in

Ωd∈{dmin,dmax} =
n∑

j=1

wij (8)

where dmin and dmax are the range from minimum to
maximum disparity and Ω is the accumulated sums. Hence, a
disparity optimization is performed to select the best disparity.
It is given by

D(x,y) = argmax(Ω) (9)

where (x, y) are the coordinates of the unknown disparity
in the disparity map D. Based on the best value from Ω, its
disparity value is assigned to D.
Our method is inspired by considering a raw disparity map

which has noisy parts. However, in this study, we investigate
if a better disparity map, yielded by a robust stereo method,
can be improved by the proposed methodology.

IV. EXPERIMENTAL RESULTS

In this section, the results and the organization of the
experiment are presented. Four image pairs were selected from
the Middlebury dataset [13]. Each pair has its own ground
truth that was used to evaluate the results. The methodology
followed the specifications of [1].
In Table I, parameters ALL, NOCC and DISC are defined

according to the Middlebury Stereo Evaluation - version 2
[13]. Although this version is no longer active, it is still being
used, as in [14]. Some evaluation masks are provided and
they are used to remove pixels that are not considered in the
statistics. ALL is the error computed on the whole image,
NOCC is the error computed on the whole image excluding
the occluded regions and DISC is the error computed within
the discontinuity regions [11].
In the test cases, raw disparity maps from Bilateral sup-

port weights (BL and BLNoSpatial), Multi-resolution and
Perceptual Grouping (MRPG), Guided filter support weights
(GF) and Segmentation-based (SB), are used as input for the
proposed methodology, referred to as segment consistency-
check (SCC).
We used a 39 × 39 support window to build raw disparity

maps and the SAD cost as a measure of stereo matching. The
color and spatial terms were set as γc = 23 and γs = 14. For
the threshould in Eq. 2, it was set as t = 1.
Table I shows the accuracy of the proposed method. The

SCC method decreased the percentage of bad pixels in the
three considered parameters for Tsukuba image pair. In this
test, for all stereo vision methods the error was reduced.
However, for Venus image pair the error increased in

NOCC parameter and sometimes in the ALL parameter. It
also happened in Teddy and Cones image pairs. Besides the
characteristics of each scene, this is probably due to the
segmentation process. We use only Tsukuba image to tune
the parameters that define the segments. After that, we use
them to segment the other image pairs. In spite of this, the
SCC method was efficient to preserve discontinuity regions as
shown in the DISC parameter.
A qualitative analysis shows the proposed methodology

compared with the raw disparity maps. Because of the space
limit, we show only the Tsukuba and Venus results. Fig.
5 shows the disparity maps to each image pair and the
disparity map with SCC method. The first column from Fig. 5
corresponds to the raw disparity maps. In the second column,
there are maps after applying Eq. 2. The third column shows
the final result and the last column displays the ground truth
map.
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TABLE I: Accuracy evaluation.

Method
Tsukuba Venus Teddy Cones

NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC
BL [3] 4.68 5.96 19.58 6.05 7.49 32.61 15.78 24.29 32.59 8.65 18.25 20.49

BL + SCC 3.35 4.13 15.44 5.77 6.47 19.42 16.30 23.71 28.54 9.04 18.08 20.03

BLNoSpatial [7] 5.27 6.26 21.90 6.98 8.36 34.64 17.66 25.82 35.83 10.25 19.34 22.38
BLNoSpatial + SCC 4.04 4.80 17.97 7.70 8.60 26.53 17.52 24.73 31.28 10.80 19.52 22.44

MRPG [4] 3.30 5.12 13.50 0.97 2.48 8.99 10.58 19.66 22.15 5.90 16.18 14.12
MRPG + SCC 1.96 2.42 9.98 5.29 5.65 10.86 11.24 17.32 19.74 6.85 14.74 13.90

GF [5] 8.51 10.15 24.80 11.14 12.57 39.81 21.49 29.46 38.75 14.62 23.99 28.75
GF + SCC 4.00 5.06 15.98 6.01 6.70 21.98 16.91 24.10 29.41 10.88 20.23 23.37

SB [6] 3.79 4.33 15.31 5.46 6.62 28.24 15.30 22.18 29.76 12.57 21.03 22.87
SB + SCC 3.01 3.29 12.31 6.77 7.44 21.46 15.81 22.42 27.16 11.89 20.31 21.23

BL

BLNoSpatial

MRPG

GF

SB

(a) (b) (c) (d)

Fig. 5: Experimental results from proposed method. Raw
disparity maps in (a), unknown disparities identified after Eq.
2 in (b), SCC final results in (c) and ground truth maps in (d).

V. CONCLUSION AND FUTURE WORK

Support weighted windows have made important changes in
the local stereo vision approach. Disparity maps can be yielded
with high accuracy besides of maintaining edge preservation
with a considerable quality.

In this work, we proposed a refinement disparity method
based on a segmentation process and support weighted win-
dows. The experimental results show that the proposed method
is efficient and it can make some enhancements in disparity
maps, as reducing the disparity error measure.

In the next phase of work, we want to compare this method
with other post-processing techniques. In addition, we want to
prepare new tests with the version 3 of the Middlebury Stereo
Vision Evaluation.
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