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Dynamic Features for Iris Recognition
Ronaldo Martins da Costa and Adilson Gonzaga, Member, IEEE

Abstract—The human eye is sensitive to visible light. Increasing
illumination on the eye causes the pupil of the eye to contract,
while decreasing illumination causes the pupil to dilate. Visible
light causes specular reflections inside the iris ring. On the other
hand, the human retina is less sensitive to near infra-red (NIR)
radiation in the wavelength range from 800 nm to 1400 nm, but
iris detail can still be imaged with NIR illumination. In order
to measure the dynamic movement of the human pupil and iris
while keeping the light-induced reflexes from affecting the quality
of the digitalized image, this paper describes a device based on
the consensual reflex. This biological phenomenon contracts and
dilates the two pupils synchronously when illuminating one of the
eyes by visible light. In this paper, we propose to capture images of
the pupil of one eye using NIR illumination while illuminating the
other eye using a visible-light pulse. This new approach extracts
iris features called “dynamic features (DFs).” This innovative
methodology proposes the extraction of information about the
way the human eye reacts to light, and to use such information
for biometric recognition purposes. The results demonstrate that
these features are discriminating features, and, even using the
Euclidean distance measure, an average accuracy of recognition of
99.1% was obtained. The proposed methodology has the potential
to be “fraud-proof,” because these DFs can only be extracted from
living irises.

Index Terms—Biometry, consensual reaction, consensual reflex,
dynamic features, iris recognition.

I. INTRODUCTION

R ECENT INFORMATION technology advancements—as
well as the enhancement in security requirements for

accessing systems, security rooms, etc.—have driven the de-
velopment of new research for the recognition of users by
biometric techniques. Biometrics can be defined as the “science
that studies the measurement of the living being.” Biometric
traits have been analyzed through the scientific literature, and
the iris recognition has received special consideration due to the
accuracy of recognition achieved by this methodology. Because
of its own features, the iris provides means to individually
identify each subject in a large population [1], [2]. It has been
commonly known—since 1936—that the texture features of the
human iris were potentially useful for discriminating individu-
als. In this year, Frank Burch, an eye specialist, suggested that

Manuscript received August 11, 2011; revised November 15, 2011 and
January 17, 2012; accepted January 23, 2012. Date of publication February 29,
2012; date of current version July 13, 2012. This work was supported in part by
FAPESP (State of São Paulo Research Foundation).

The authors are with the Electrical Engineering Department, University of
São Paulo, São Carlos, 13566-590, Brazil (e-mail: ronaldomc12@gmail.com;
agonzaga@sc.usp.br).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2012.2186125

these features could be employed for identifying subjects. The
first theory of recognition using the iris was documented by
James Daggarts in 1949 [3]. Since the theory by Daggarts, other
iris recognition algorithms have been developed, such as the
Wildes [5], Boles and Boashash [6] algorithms.

Compared to other biometric methods, iris recognition pro-
vides greater accuracy. For example, in 1993, Daugman [4] had
already patented his method, which produces accuracy rates
close to 99%.

Despite the high accuracy rates, most iris recognition meth-
ods are applied to static images, that is, the recognition is
performed on a single image obtained under special near infra-
red (NIR) illumination conditions or under visible light. More
recently, some studies using iris video images were reported
[16], [17].

The first step in the biometric recognition process through the
iris is pupil localization. Several algorithms use circle detection
by the circular Hough transform [8] or by the integrodifferential
operator [4], [3], [9], [10]. There are also hybrid methods with
a combination of threshold, edge detectors, and the circular
Hough transform [11]–[15]. Yet, as shown by John Daugman
in 2007 [1], the pupil is not a perfect circle. As a result, a
circle-supporting method to perform segmentation may omit
important information and affect accuracy in a recognition
process.

After the iris is segmented, different approaches are used in
its codification. Daugman [4] proposed the codification of the
iris pattern into a code named “IrisCode,” with 256 bytes, by
demodulation and use of a 2-D Gabor filter, representing the
textures by phasors in the complex plane.

Other methods for the extraction of iris features are found in
the literature, such as the cosine transform [19], the Markov
model [15], the cumulative SUM [10], the convolution of a
predetermined weight template upon a region of interest [12],
a scale invariant feature transform-based algorithm [18], and
direct linear discriminant analysis [19].

Daugman [4] implemented the recognition by a test with
Boolean operations, such as XOR, applied to the 2048 bits.
The XOR operator detects discordance between the pairs of
bits. Then, it computes the Hamming distances (HD) as a
dissimilarity measure between two irises. The shorter the HD
is, the greater the similarity between the two irises becomes.

These iris recognition methodologies do not evaluate the
known iris features together with, for example, the movements
performed by the eye under illumination conditions. However,
as the iris has a trabecular structure capable of altering its shape
according to visual stimuli, it is assumed that these features can
be altered differently in each subject, or that the evaluation of
the pupil movement pattern can contribute to the recognition of
a particular subject.
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II. OBJECTIVES

To meet the increasing need for secure individual recogni-
tion, this paper suggests a new approach for recognition based
on the human iris. This approach allows for both the evaluation
of the texture features observed during pupil movements and
the iris contraction and dilation rates due to the alteration of
the illumination conditions. The purpose of this approach is
to demonstrate that the dynamic features (DFs), that is, the
features extracted during pupil contraction and dilation, can be
employed efficiently in biometric recognition using the human
iris.

III. HUMAN OPTIC SYSTEM ANATOMY

The iris is a pigmented tissue, a trabecular meshwork, i.e.,
crossed filaments formed at the eighth month of pregnancy,
between the cornea and the lens. Its surface is relatively
flat, protected from external agents by the cornea, with a
central orifice called the pupil. The iris has in its stroma
a tissue meshwork located in its internal circle and dilator
muscles that contract and dilate the pupil. The main function
of the iris is to control, through the pupil, the amount of
light entering the eye. The iris has a unique and complex
structure for each individual. It is practically impossible for
two irises to have the same texture. Therefore, iris biomet-
rics is one of the most accurate methods of recognition. It
is based on visible qualities, such as rings, grooves, spots,
crowns, etc. The algorithms basically convert these visible
features into a code, which will be the stored pattern for future
comparison [20].

The human eye is sensitive to visible light; the pupil contracts
and dilates depending on the intensity of visible light, and the
iris and the sclera reflect light exceptionally well. Therefore,
in capturing the image of the human iris under visible light,
a question arises: how can the natural reflections on the globe
of the eye, iris, and sclera surfaces be kept from affecting the
quality of the digitalized image?

Several techniques are employed by professional photog-
raphers to avoid the reflected light beams from the eye by
positioning the camera appropriately. However, in order to
acquire iris images at a good resolution, allowing for the
extraction of features required for biometric recognition, these
photographic techniques cannot be used because the camera for
iris recognition must be positioned in front of the iris and at a
short distance, unlike photography.

Current systems for the acquisition of human iris
images—for the purpose of recognition—have solved this
problem by using images obtained by NIR light. In these
systems, the eye is illuminated from the front with NIR
light-emitting diodes (LEDs), and the image is captured and
digitized with a camera sensitive to infra-red light, resulting in
a gray image that minimizes light reflections on the iris, as can
be seen on Fig. 1 [1], [21].

How can we capture images without visible light reflections
while controlling the pupil contraction and dilation? Better yet,
how can we capture iris images by NIR illumination while
using visible light to contract and dilate the pupil without

Fig. 1. NIR illumination eye image. A NIR illumination image usually
presents good resolution. Nevertheless, the frequency of near infra-red light
keeps the pupil from contracting and dilating.

Fig. 2. Consensual reflex. Adapted from [27].

causing reflections on the iris, thus extracting the DFs, that is,
features based on the pupil movements?

The answer lies in the anatomy of the human optic system.
The eye captures, through the cones and rods, the light stimuli
that is taken to the brain by the optic nerve for visual images to
be processed [22]–[27].

If light illuminates one eye, the pupils of both eyes normally
constrict. The constriction of the pupil upon which the light
is illuminated is called the direct light reflex. The constriction
of the opposite pupil, even though no light fell upon that
eye, is called the consensual light reflex. The afferent nervous
impulses travel from the retina through the optic nerve, the optic
chiasma, and the optic tract. A small number of fibers leave
the optic tract and the synapses on nerve cells in the pretectal
nucleus. The impulses are passed by axons of the pretectal
nerve cells to the parasympathetic nuclei of the oculomotor
nerve on both sides.

The fiber synapse and the parasympathetic nerves travel
through the oculomotor nerve to the ciliary ganglion in the or-
bit. Finally, postganglionic parasympathetic fibers pass through
the short ciliary nerves to the eyeball and the constrictor pupil-
lae muscle of the iris. Both pupils constrict in the consensual
light reflex because the pretectal nucleus sends fibers to the
parasympathetic nuclei on both sides of the midbrain as shown
in Fig. 2 [22]–[27].

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE GOIAS. Downloaded on June 03,2022 at 18:44:12 UTC from IEEE Xplore.  Restrictions apply. 



1074 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012

Fig. 3. Proposed device and prototype to capture iris images.

IV. METHODOLOGY

A. Material

Based on the “consensual reflex,” a device was developed
for the acquisition of iris images, as shown in Fig. 3. This
device performs different and independent tasks on each eye.
The right eye receives visible light stimuli (white light) at
computer-controlled specific time intervals, while the left eye
image is captured and digitized into a video sequence under
NIR illumination. The two sides of the device related to the left
and right eyes are isolated from each other.

The video sequence obtained under NIR illumination is
synchronized with the “visible light” pulses (a white light LED
was employed) applied to the other eye. Thus, it is possible to
extract the features of the frames during pupil contraction or
dilation without the interference of light reflections from the
iris, pupil, and sclera. Their movements are induced by the light
stimulus applied to the other eye and, due to the consensual
reflex, repeated by the eye whose image is being digitized
without interference from visible light reflections. A prototype
was built so that the video sequences could be acquired. The
prototype performs different and independent tasks on each eye.
While the right eye is receiving computer-controlled visible
light stimuli, it is basically impossible for the subject under
study to know when the time intervals of illumination will
take place. Therefore, there is almost no chance of fraud. The
system depends on a living iris to respond to the previously
programmed light stimuli.

The prototype has a camera sensitive to NIR radiation, whose
characteristics are: NTSC, 510 × 492 pixels of resolution, NIR
sensitive at 850 nm. The camera was positioned at a fixed focal
distance of 5.2 cm from the eye.

A 20-LED set operating in the range of NIR light, installed
around the lens and parallel to its optic axis, provides illumina-
tion of the front of the eye whose image is being digitized.

Fig. 4. Light stimuli intervals during video sequence acquisition.

TABLE I
VISIBLE LIGHT (LED) CONTROL

In order to digitize the video sequences, we used a frame-
capture board with a USB 2.0 interface by PixelView running
at 30 frames/s. The reflex caused by the infra-red LED takes
place solely on the pupil but not on the iris. Reflecting the NIR
illumination is a biological feature of the retina and does not
compromise the image quality of the iris to be analyzed by
segmentation.

B. Video Capture

During the capture of each image sequence, we applied
visible light pulses to the eye not being digitalized using the
white LED, whereas the camera digitizes the image sequence of
the other eye that is illuminated in the NIR band. Fig. 4 shows
the time intervals determined by our proposed methodology for
the measurement of the DFs of the iris. These intervals were
defined empirically and can be altered by the control software.
Table I shows the visible light LED controlled operation illumi-
nating the right eye in the pre-established time intervals.

We captured videos from 111 people in a maximum period
of 120 days between the first and last video—five videos
of each—totaling 555 videos, with 1000 frames per video
sequence.

C. Preprocessing and Iris Segmentation

In order to segment the iris, we have to exclude the regions
that will interfere with the recognition, such as the eyelashes
and the eyelids. Due to eye movements, it is necessary to delete
those frames that cannot be used for the recognition method
and select only the adequate ones. The algorithm excludes
the inadequate frames and employs the remaining ones. In
the proposed method, capturing a new video requires a longer
capture time for the subject, possibly causing some discomfort
to the subject.

The problems which may lead a frame to be excluded during
preprocessing can be seen in Fig. 5, and are “frowned” eyes
(Fig. 5(a)), closed eyes (Fig. 5(b)), “off-angle” eyes (Fig. 5(c)),
and an unfocused image (Fig. 5(d)).

1) Discarding Unfocused Images and Improper Frames:
Some frames can be unfocused or smudgy, which may affect
the extracted features.
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Fig. 5. Improper frames. (a) “Frowned” eyes. (b) Closed eyes. (c) “Off-angle”
eyes. (d) Unfocused image.

Fig. 6. Two image portions analyzed, in the iris area, with a dimension of
22 × 22 pixels.

In order to diminish the influence of these errors, two image
portions are analyzed in the iris area to determine if the image is
adequate for analysis. Each image has a dimension of 22 × 22
pixels, as shown at Fig. 6. We calculated the 2-D Fourier spec-
trum of each portion, resulting in two 22 × 22 bidimensional
matrices, and determined a quality indicator (Q) shown in (1).

Compared to images of low quality, a clear and properly fo-
cused iris image has a relatively uniform frequency distribution.

Q=
[
(F1+F2+F3);

F2

(F1+F3)

]

Fi=
∫ ∫

Ω={(u,v)|fi
1<

√
u2+v2≤fi

2}
|F (u, v)dudv| i=1, 2, 3 (1)

where F (u, v) is the 2-D Fourier spectrum of an iris region,
F1, F2, and F3 are the power of the low-, middle-, and high-
frequency components, respectively, f i

1 and f i
2 are the radial

frequency pair and are bound by the range of the corresponding
frequency components.

The quality descriptor, Q, consists of two discriminating
frequency features. The first feature is the total spectral power

Fig. 7. Example of a segmented iris.

of an iris region, which can effectively discriminate clear iris
images from severely damaged iris images. The second feature
is the ratio of the middle-frequency power to the frequency
power of the other frequency components. It should be larger
for the clear image than for the defocused and motion blurred
image because the former has much more middle-frequency
information. We used the Euclidean distance to distinguish
whether the corresponding iris image is clear or not.

Ideal values for Q are values less than Q = [6.8; 0.425].
Larger Q values mean that the frame must be discarded as an
“unfocused image.” Proper frames are those in which the pupil
is located near the center.

2) Iris Segmentation: For pupil detection and iris segmenta-
tion, our approach is very simple and fast, because we need
information, frame by frame, from both the pupil diameter
variation and the iris texture, at video rates. We used the Sobel
edge detector and the Hough transform for circles [8].

Moreover, we cut the segmented iris on the top and bottom,
taking into account a horizontal tangent to the pupil border,
thereby generating two sectors (Sector A and Sector B), as
shown in Fig. 7. These areas are excluded because they contain
information that can compromise the image evaluation, such as
eyelashes, eyelid, and sclera. The change in texture due to iris
contraction/dilation process will be measured, frame by frame,
over these two sectors.

D. Dynamic Features

A challenge in the proposed approach is related to the
extraction of the discriminating DFs. The primary movement
that occurs in the globe of the eye submitted to a light stimulus
is pupil contraction and dilation [22]–[27]. In order to define
which features must be evaluated to verify its discrimination
potential, we have defined as “DFs” those related to the pupil
movement during the light stimuli, that is:

a) Features of pupil contraction and dilation.
b) Iris texture properties during pupil contraction and

dilation.
Twelve different features were defined and noted in Ta-

ble II. We analyzed these features one by one to verify the
discrimination potential among different segmented irises. The
first four features are directly related to pupil contraction and
dilation, and the other ones are related to the texture properties
in the iris area that are measured in intervals with and without
illumination.

With our prototype, we captured a video database. Each
video has 1000 frames digitized on predefined intervals of light
stimuli.
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TABLE II
PROPOSED DYNAMIC FEATURES

We established five periods for data analysis. The first period
is composed of all the adequate frames of the video, and the
other ones are defined so that the illumination transition period
could be obtained, capturing the alterations taking place in this
transition.

The periods comprise the following frames:

• First period—all the 1000 frames
• Second transition period—from frame 210 to 220
• Third transition period—from frame 420 to 430
• Fourth transition period—from frame 630 to 640
• Fifth transition period—from frame 840 to 850

E. Features of Pupil Contraction and Dilation

1) Circularity: The pupil, in most cases, is not a perfect cir-
cle. Because the pupil is formed by muscles (trabeculae) [22]–
[27], the contraction and dilation can disfigure this pseudocircle
even more. The pupil is better approximated by an ellipse.
Both contraction/dilation and circularity measured over time
are features that differ from person to person. In order to
verify the discrimination potential of iris circularity among the
subjects, an analysis on this property was performed for five
people.

The pupil circularity is given by (2) (see Fig. 8).

C = A/a (2)

where

C is the circularity,
A is the pupil’s major axis, and
a is the pupil’s minor axis.

When we apply a visible light pulse onto the right eye, both
the right and left pupil contract, and when the light is turned
off, both pupils dilate. The pupil circularity is altered during the
contraction and dilation times and is measured frame by frame
during the referred transition periods (from the second to the
fifth).

By using circularity, we extracted five features: the overall
mean circularity of all frames and the four mean values from
the second to the fifth transition periods.

2) Diameter: The pupil diameter is another dynamic char-
acteristic contributing to recognition, and it is determined by
the major axis measurement.

The pupil diameter provides DFs to the recognition task, such
as the contraction and dilation times and the pupil contraction
and dilation rates as a function of the applied stimuli.

We extracted 13 features using the diameter measurement:
a) The overall diameter mean value for all the frames—one

feature;
b) The diameter mean values from the second to the fifth

transition period—four features;
c) The pupil contraction rate in the second and fourth tran-

sition periods—two features;
d) The pupil dilation rate in the third and fifth transition

periods—two features;
e) The pupil contraction time in the second and fourth

transition periods—two features;
f) The pupil dilation time in the third and fifth transition

periods—two features.
3) Pupil Contraction and Dilation Rates: Fig. 9 presents a

graph of the pupil diameter variation for a subject. As high-
lighted, the pupil contracts more in the first light pulse, between
frames 210 and 220 (second transition period), than between
frames 630 and 640 (fourth transition period), when the second
light pulse takes place. The mean values for this variation are
used as a feature for each subject.

The pupil contraction or dilation rates are calculated from
the diameter variation, within the specified transition period,
between a minimum and a maximum value. We extracted four
DFs, measured at each interval transition. In the transition from
interval 1 to 2 and from interval 3 to 4, the illumination is on,
and the pupil is contracted, leading to the two contraction rates
calculated by (4). In the transition from interval 2 to 3 and from
interval 4 to 5, the illumination is turned off, causing the pupil to
dilate, leading to the two dilation rates calculated by (5), where
Δc is the contraction rate, that is, how much the diameter is

reduced over time, indicated by D−

Δd is the dilation rate, that is, how much the diameter is
increased over time, indicated by D+

Δc =
∂D−

∂t
(3)

Δc =
∂D+

∂t
. (4)

4) Pupil Contraction and Dilation Time: After a certain
period of time from the initiation of the illumination pulse, the
pupil diameter achieves its maximum contraction, and, after the
illumination is turned off, the diameter achieves the maximum
dilation and then is stable. The area highlighted in Fig. 9 shows
the diameter alteration in the transition area (light pulse applied
at frame 210), the minimum diameter achieved (maximum
contraction) and finally the gradual return to the mean stabilized
value. We measured the contraction and dilation time in “num-
ber of frames” because the camera acquisition rate is constant
(30 frames per second (FPS)).

We established the number of 50 frames as a maximum limit
for the evaluation, thus avoiding errors generated during the
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Fig. 8. Pupil circularity

Fig. 9. Pupil diameter variation for a subject.

acquisition stage due to the person’s reaction to white light.
The highest/lowest value within this range is assumed to be the
maximum contraction/dilation. We extracted four more features
using this measure, taken during the interval transition. During
the transition from interval 1 to 2 and from interval 3 to 4, the
illumination is on, and the pupil is contracted, leading to the
two contraction times. In the transition from interval 2 to 3 and
from interval 4 to 5, the illumination is turned off and the pupil
dilates, leading to the two dilation times.

F. Iris Texture Properties During Pupil Contraction
and Dilation

To extract the iris texture features, we used second-order
statistics [29]. Iris texture has been commonly utilized in static
image recognition [4]. Many structures found in the texture
of iris images provide important information in their statistical
classification. The first-order statistical measures are limited as
texture descriptors because there is no consideration regarding
the relative position of the gray levels in a certain image.
Second-order statistics solve this problem by considering the
relative position of the pixels.

The second-order statistical measures are obtained from
the second-order probability distribution [30] or from co-
occurrence matrices. When an image is analyzed, a dipole r is
positioned on the image of a specific size and direction. When
two pixels with intensity x0 coincide with the dipole ends,
an occurrence counter for pairs of pixels with intensity x0 is
incremented. In order to calculate the occurrence probability for
the pixels x0 in the image, the number of occurrences is divided
by the maximum number of possible occurrences, under the
conditions imposed by the size and direction of the dipole r.

Therefore, if the gray level distribution in two images is
different, the probability for the dipole p(r) of touching two

points in each image is different.
1) Gray Level Mean Values: The gray levels are not under

the influence of illumination because the image is acquired
using NIR illumination that does not cause pupil reactions.

We extracted ten features using the gray level mean values;
five for iris sector A and five for iris sector B (see Fig. 7).

2) Gray Level Standard Deviation: The standard deviation
is the iris gray level deviation around the mean value in the
established sector and periods.

By using the standard deviation, we extracted ten features;
five for iris sector A and five for iris sector B (see Fig. 7).

3) Gray Level Variation Coefficient: The variation coeffi-
cient is given by (5) and represents the iris gray level vari-
ation coefficients for the two sectors and in the five periods
considered

V C =
S

x
(5)

where
S is the standard deviation and
x is the gray level mean value.

We extracted ten features using the gray level variation
coefficient; five for iris sector A and five for iris sector B.

4) Angular Second Moment: The Angular Second Moment
(ASM) is a measure that evaluates the texture uniformity, which
is the repetition of pairs of gray levels. When the area of interest
shows uniform texture (values of gray levels close to each
other), the energy value tends toward 1. In case the area is not
uniform, the energy value tends toward 0 (zero). The ASM is
given by

ASM =
n∑

i=1

n∑
j=1

(
p(i, j, d, θ)

i · j
)2

(6)

where (i, j) are the lines and columns of the co-occurrence
matrices, p(i, j, d, θ) is the value for the line cell i, column j, at
distance d, and angle θ.

We extracted 40 features using the ASM measure; 20 features
for iris sector A and 20 features for iris sector B.

5) Correlation: Correlation measures the linear dependence
among the gray levels of pairs of pixels. Values close to 1 imply
a strong relationship between the gray levels of the pixels. The
“Correlation” measure is not correlated to the ASM, that is,
high correlation values can be found in low or high energy ASM
values for the same area of interest. Correlation is given by

COR =

n∑
i=1

n∑
j=1

i·j·p(i,j,d,θ)
i·j − μi · μj

σi · σj
(7)
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where p(i, j, d, θ) is the value for the line cell i, column j, at
distance d, and angle θ, considering the co-occurrence matrices

μi =
n∑

i=1

n∑
j=1

i · p(i, j, d, θ)
i · j

μj =
n∑

i=1

n∑
j=1

j · p(i, j, d, θ)
i · j

σi =

√√√√ n∑
i=1

n∑
j=1

i2 · p(i, j, d, θ)
i · j − μi2

σj =

√√√√ n∑
i=1

n∑
j=1

j2 · p(i, j, d, θ)
i · j − μj2.

We extracted 40 features by determining correlation values;
20 for each iris sector.

6) Entropy: When the image does not possess uniform tex-
ture, the entropy values tend to be very low. The entropy reaches
its maximum value when the pixels in the area of interest show
gray levels with random values. The entropy shows a negative
linear correlation with the ASM, and it is not correlated to the
correlation measure. Entropy is given by

ENT =
n∑

i=1

n∑
j=1

p(i, j, d, θ)
i · j · log

(
i · j

p(i, j, d, θ)

)
(8)

where p(i, j, d, θ) is the value for the line cell i, column j, at
distance d, and angle θ, considering the co-occurrence matrices.

We extracted 40 features by using the entropy; 20 for each
iris sector.

7) Contrast: Contrast measures the presence of a sudden
transition of gray levels. The contrast is given by (9).

CON =
n∑

i=1

n∑
i=1

(i − j)2 · p(i, j, d, θ)
i · j (9)

where p(i, j, d, θ) is the value for the line cell i, column j, at
distance d, and angle θ, considering the co-occurrence matrices.

We extracted 40 features by using Contrast; 20 for each iris
sector.

8) Inverse Difference Moment: When the concentration of
values in the co-occurrence matrix diagonal reaches the max-
imum value, the IDM reaches the maximum value. The (10)
provides the inverse difference moment (IDM) value

IDM =
n∑

i=1

n∑
i=1

1
1 + (i − j)2

· p(i, j, d, θ) (10)

where p(i, j, d, θ) is the value for the line cell i, column j, at
distance d, and angle θ, considering the co-occurrence matrices.

We extracted 40 features by determining the mean of the
IDM; 20 for each iris sector.

Because the values of the feature vector are different, this
results in having more weight for one measure relative to the

TABLE III
FEATURE VECTOR FOR A VIDEO SEQUENCE

other; each of these measures is normalized to its maximum
according to

zi =
xi

xm
(11)

where,

zi is the normalized feature,
xi is the extracted feature,
xm is the maximum value of the extracted feature

By taking into account all the video sequence periods, we
initially proposed a feature vector with 248 elements, ordered
according to Table III.

V. FEATURE SELECTION

In the analysis performed with five subjects, the iris fea-
tures were discriminating when assessed alone. However, when
working with a large amount of information, studies indicate
the need to perform data mining so that the impact on the use
of different measures together can be precisely evaluated, as
proposed in the method.

Data mining is employed in the selection of features with
a greater discrimination potential, thus optimizing the process
with a reduction in the features applied. However, more than
just simply obtaining this information reduction, this process
allows for the generation of ways to predict future standard
occurrences.

In order to accomplish the data mining task, we used the
Weka software [31].

From the 248 DFs extracted, 17 were indicated by the data
mining processing as the most discriminating ones, as seen
in Table IV. For selection of the attributes, we applied the
wrapper algorithm that performs internal cross-validation on
the training data in order to determine the merit of a given
subset of attributes.
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TABLE IV
DYNAMIC FEATURES SELECTED BY DATA MINING

VI. RESULTS

The results shown utilize, a total of 555 videos (111 subjects
with five videos for each subject), each of which having a
sequence of 1000 frames. In order to validate the results, we
applied a cross-validation k-fold test with k = 5. It is expected
that among the iris images of the same person, the distance
between the feature vectors will be short, whereas among the
iris images of different people, the distance be greater.

We used the Euclidean distance for the method validation,
and Fig. 10 shows the Recall x Precision curve with the feature
vector full (248 features) and with the vector containing only
the selected features (17 features) by the data mining software.
Precision (P ) is the fraction of retrieved iris images that are
relevant to the search, and Recall (R) is the fraction of the
iris images that are relevant to the query that are successfully
retrieved, and they are defined as:

P =
tp

tp + fp
R =

tp

tp + fn

where, tp is the number of true positives, fp is the number of
false positives, and fn is the number of false negatives.

We also tested the algorithm performance by the cumulative
match score (CMS) [7] curve, both before the feature selection

Fig. 10. Recall x Precision curve before and after feature selection.

Fig. 11. CMS curve before and after feature selection.

Fig. 12. Reduction of the evaluated intervals.

and after the feature selection. These curves can be seen in
Fig. 11.

The results obtained demonstrated an outstanding discrim-
ination potential for the dynamic characteristics proposed in
this paper. However, for the prototype developed, operating at
30 FPS, capturing a video with 1000 frames means an exposure
time of 33.33 s for each subject. This period of time can be
uncomfortable for the subjects, leading to poor video quality,
in addition to being practically unfeasible for the recognition of
people.

By considering the first accommodation interval (frames 1
to 209) as equivalent to the intervals 3 and 5 (with the light
stimulus on) and the interval 2 equivalent to the interval 4
(without the light stimulus), we implemented an alternative
method in order to reduce the exposure time. We changed
our acquisition time by using only the intervals 1 and 2 for
evaluation, as shown in Fig. 12. The new feature vector has the
illumination transition information, which occurs from frames
210 to 220 and from frames 420 to 430.

With this reduced number of time intervals, the new exposure
time is now 14 s, a significant reduction compared with the
exposure time for the previous 1000-frame model. The number
of elements in the feature vector is also reduced because the
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TABLE V
NEW FEATURE VECTOR OF A VIDEO SEQUENCE

TABLE VI
NEW DYNAMIC FEATURES SELECTED BY DATA MINING

Fig. 13. Recall x Precision curve taking into account two intervals.

analysis is performed only in the two initial video periods.
Table V shows the new reduced feature vector before data
mining.

As was done with the previous 1000-frame model, we per-
formed tests using only two time intervals with data mining,
resulting in a reduction from 100 to only 5 discriminating
features, as shown in Table VI. Fig. 13 shows the Recall x
Precision curve by using Euclidean distance metrics using only
two video intervals, both before and after the selection of
features, by data mining.

The method performance using two video intervals was also
evaluated by the CMS curve (Fig. 14), both before and after the
feature selection, by data mining.

Fig. 14. CMS curve taking into account two intervals.

Fig. 15. Recall x Precision curve for five (full videos) and two (reduced
videos) illumination intervals after feature selection.

Fig. 16. CMS curve for five (full videos) and two (reduced videos) intervals
after feature selection.

Fig. 15 shows the comparison of the results considering
the two analyses performed, that is, on the complete videos,
with 1000 frames and on the reduced videos, with 420 frames.
In both analyses, the best results were obtained after feature
selection. Fig. 16 shows the best results by the CMS curve.

For comparison, we took the best frames (ten frames with
the lowest values for Q) of each video and applied Daugman’s
method [1].

Table VII shows the average accuracy, the equal error rate
and the confidence interval of 95% for Daugman’s method
compared to our approach and Fig. 17 shows the detection error
tradeoff curve (DET). The results demonstrate that these fea-
tures are discriminating features, and, even using the Euclidean
distance measure, an average accuracy of recognition of 99.1%
was obtained.
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TABLE VII
AVERAGE ACCURACY COMPARED

Fig. 17. DET curve for the dynamic features (DF) and Daugman’s method
[1]. FAR = false accept rate. FRR = false reject rate.

VII. CONCLUSION

This innovative methodology proposes the extraction of in-
formation about the way the human eye reacts to light, and
to use such information for biometric recognition purposes.
The results presented here demonstrated a minimum accuracy
difference between the analyses performed with the full video
versus the analysis with the reduced video, particularly in the
evaluation by the Recall x Precision.

What is the shortest video time needed to recognize a sub-
ject? The results demonstrate that only two video intervals
with a change in the illumination conditions are sufficient. And
what is the ideal duration for each interval? It is likely that the
intervals are different for different subjects.

One of the DFs that can be a limit is the pupil contrac-
tion/dilation time after the change in illumination conditions. In
the evaluation of the 111 subjects, the meantime to stabilize the
pupil contraction/dilation is around 50 frames, that is, from 2 to
3 s. This stabilization time indicates that a video with a duration
of over 5 s (100 frames) and with a change in the illumination
conditions during this time interval is necessary to accomplish
the recognition task.

Recognition methods that utilize static iris images provide a
high accuracy rate. We did a fair accuracy comparison between
a static method (Daugman) and our method using the ten best
frames from each video. Considering our acquired images, the
DFs presented an excellent performance. Moreover, a simple

similarity measure, based on the Euclidean distance, was em-
ployed in this paper, but is not employed by the static methods.

The results demonstrate that the iris DFs, proposed by our
methodology, are discriminating, and may be employed for
personal identification. In addition, the possibility to extract
DFs from living irises could increase the resistance of our
approach to fraud attempts in personal identification.

We argue that if a specific anticounterfeit technique followed
by a classical recognition technique is used, the extracted iris
features would still be static characteristics. We think that it
could be a reasonable solution, and we hope to compare our
approach with them, as soon these methods could be imple-
mented. However, our methodology captures new information
about the human’s eye reaction under visible-light radiation.
This approach has never been used in the published literature,
until now, and the proposed DFs must be improved for better
precision.

The tests demonstrate that, in addition to recognizing a
person, the proposed method also authorizes the validation
of certain attributes which the traditional methods for static
images are not able to do. For example, the proposed method
can check if the input image being analyzed is actually from a
“living iris” or not by determining if the subject to be validated
responds to the illumination stimuli applied, or if the subject
is using artificial irises in an attempt to cheat the recognition
method. In addition to personal recognition, the methodology
proposed also allows for the evaluation of the iris behavior at
different moments under different illumination stimuli.

The device built, conceived for this methodology, presents
some original ideas, and may open a new investigation field
because it also enables the evaluation of the iris behavior, e.g.,
the response time to the stimuli and the consequent alterations.
That is, it can be used for investigations in ophthalmological
areas (detection of optic nerve diseases) and public security
(detection of alcohol levels), etc.
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