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ABSTRACT

Liveness detection methods have been extensively addressed to
avoid frauds in biometric systems. In this paper, we introduce a
recently method for the characterization of iris dynamics in the
context of image classification, by assessing its performance with
a novel pattern recognition technique called Optimum-Path Forest,
which demonstrated to be similar to Self Organizing Maps, but
much faster, and superior to Support Vector Machines and Artificial
Neural Networks using Multilayer Perceptrons.

Index Terms— Iris recognition, Biometrics, Optimum-Path
Forest, Pattern Recognition

1. INTRODUCTION

The seminal work about human iris was initially proposed by Frank
Burch in 1936. However, it was only with John Daugman that com-
puterized applications were developed based on human identification
assessing their iris properties [1]. Although several methods have
been developed in the last decade for recognition based on iris fea-
tures, most of the them are based on the algorithm created by Daug-
man [1]. The identification techniques are extremely precise, com-
pleting the process in a split second. However, all literature-known
methods are applied to static images. In such a way, by observing
the current methods, it is verified that they do not guarantee that the
individual being evaluated is actually present or if the captured im-
age is a photograph, prosthesis or some type of digital image, which
may serve as entry data to the recognition system for frauds.

The art of distinguishing real people from photos or non real
subjects receives the name of liveness detection, which has been ex-
tensively used to avoid frauds in biometric systems. Jee et al. [2], for
instance, applied a methodology to detect real faces from non real
ones. Kanematsu et al. [3] proposed a liveness detection method to
detect fake iris from real ones using a variation in the brightness of an
iris pattern induced by a pupillary reflex. Recently, Costa and Gon-
zaga [4] proposed an innovating method composed by an electronic
device and a software to capture the dynamic properties of the iris,
such as pupil contraction and dilation time, which is very robust to
frauds regarding fake and computerized created iris. However, this
work did not evaluate the dynamic features of the iris in the context
of classification, only for precision and recall.

Support Vector Machines (SVM) and Artificial Neural Networks
(ANN) have been also used for iris recognition. The former was
applied by Roy and Bhattacharya [5], and the latter was addressed
by [6, 7], among others. Despite the use of these artificial intelli-
gence techniques have been increasing, some flaws need to be revis-
ited. An ANN with multi-layer perceptrons (ANN-MLP), for exam-

ple, can address linearly and non-linearly separable problems, but
not non-separable situations with maximum effectiveness [8]. As
an unstable classifier, collections of ANN-MLP can improve its per-
formance up to some unknown limit of classifiers. Although Self
Organizing Maps (SOM) [8] have been also extensively used in sev-
eral applications, the selection of its parameters, i.e., the number of
neurons in the squared lattice and the number of iterations of the
algorithm, is a hard task and extremely dependent of the application.

Support Vector Machines (SVM) have been proposed to over-
come the problem, by assuming linearly separable classes in a
higher-dimensional feature space [9]. Its computational cost rapidly
increases with the training set size and the number of support vec-
tors. As a binary classifier, multiple SVM are required to solve
a multi-class problem. Another important question is that the as-
sumption of separability may also not be valid in any space of finite
dimension.

Recently, a novel framework for graph-based classifiers that re-
duce the pattern recognition problem as an optimum path forest com-
putation (OPF) in the feature space induced by a graph were pre-
sented [10]. These kind of classifiers do not interpret the classifi-
cation task as a hyperplanes optimization problem, but as a com-
binatorial optimum-path computation from some key samples (pro-
totypes) to the remaining nodes. Each prototype becomes a root
from its optimum-path tree and each node is classified according
to its strongly connected prototype, that defines a discrete optimal
partition (influence region) of the feature space. The OPF-based
classifiers have some advantages with respect to the aforementioned
classifiers: (i) one of them is free of parameters, (ii) they do not as-
sume any shape/separability of the feature space and (iii) run training
phase faster, which allows the development of real time applications
for fraud detection in electricity systems.

This work has as the main goal to characterize human iris by
means of an OPF classifier, and has two main contributions: (i) to be
the first into applying the OPF classifier for iris recognition and to be
pioneer into using the dynamic iris’ method proposed by Costa and
Gonzaga [4] in the context of supervised classification. The remain-
der of this paper is organized as follows. Sections 2 and 3 present the
OPF and the dynamic features of the iris method, respectively. Sec-
tion 4 shows the experimental results, in which we compared OPF
among two kind of Support Vector Machines, ANN-MLP and SOM
networks. Section 5 states conclusions.

2. OPTIMUM-PATH FOREST

Let Z1 andZ2 be the training and test sets with|Z1| and|Z2| sam-
ples such as points or image elements. Letλ(s) be the function that
assigns the correct labeli, i = 1, 2, . . . , c, from classi to any sample



s ∈ Z1 ∪ Z2. Z1 is a labeled set used to the design of the classifier
andZ2 is used to assess the performance of classifier and it is kept
unseen during the project.

Let S ⊂ Z1 be a set of prototypes of all classes (i.e., key sam-
ples that best represent the classes). Letv be an algorithm which
extractsn attributes (color, shape or texture properties) from any
samples ∈ Z1 ∪ Z2 and returns a vector~v(s) ∈ ℜn. The dis-
tanced(s, t) between two samples,s andt, is the one between their
feature vectors~v(s) and~v(t). One can use any valid metric (e.g.,
Euclidean) or a more elaborated distance algorithm. Our problem
consists of usingS, (v, d) andZ1 to project an optimal classifier
which can predict the correct labelλ(s) of any samples ∈ Z2. The
OPF classifier creates a discrete optimal partition of the feature space
such that any samples ∈ Z2 can be classified according to this par-
tition [10]. This partition is an optimum path forest (OPF) computed
in ℜn by the image foresting transform (IFT) algorithm [11].

Let (Z1, A) be a complete graph whose the nodes are the sam-
ples inZ1 and any pair of samples defines an arc inA = Z1 × Z1.
The arcs do not need to be stored and so the graph does not need to
be explicitly represented. A path is a sequence of distinct samples
π = 〈s1, s2, . . . , sk〉, where(si, si+1) ∈ A for 1 ≤ i ≤ k − 1.
A path is saidtrivial if π = 〈s1〉. We assign to each pathπ a cost
f(π) given by a path-cost functionf . A pathπ is said optimum if
f(π) ≤ f(π′) for any other pathπ′, whereπ andπ′ end at a same
samplesk. We also denote byπ · 〈s, t〉 the concatenation of a path
π with terminus ats and an arc(s, t).

The OPF algorithm may be used with anysmoothpath-cost
function which can group samples with similar properties [11]. We
are interested in prototypes that fall in the region between classes,
which are generally overlapped regions. So, we will address the
path-cost functionfmax, because of its theoretical properties for
estimating prototypes that have this behavior (Section 2.1 gives the
details about this procedure):

fmax(〈s〉) =

{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

such thatfmax(π) computes the maximum distance between adja-
cent samples inπ, whenπ is not a trivial path.

The OPF algorithm assigns one optimum pathP ∗(s) from S to
every samples ∈ Z1, forming an optimum path forestP (a function
with no cycles which assigns to eachs ∈ Z1\S its predecessorP (s)
in P ∗(s) or a markernil whens ∈ S. Let R(s) ∈ S be the root
of P ∗(s) which can be reached fromP (s). The OPF algorithm
computes for eachs ∈ Z1, the costC(s) of P ∗(s), the labelL(s) =
λ(R(s)), and the predecessorP (s), as follows.

Algorithm 1 – OPF ALGORITHM

INPUT: A λ-labeled training setZ1, prototypesS ⊂ Z1

and the pair(v, d) for feature vector and distance
computations.

OUTPUT: Optimum-path forestP , cost mapC and label
mapL.

AUXILIARY : Priority queueQ and cost variablecst.

1. For eachs ∈ Z1\S, setC(s)← +∞.
2. For eachs ∈ S, do
3. C(s)← 0, P (s)← nil, L(s)← λ(s), and inserts in Q.
4. WhileQ is not empty, do
5. Remove fromQ a samples such thatC(s) is minimum.
6. For eacht ∈ Z1 such thatt 6= s andC(t) > C(s), do

7. Computecst← max{C(s), d(s, t)}.
8. If cst < C(t), then
9. If C(t) 6= +∞, then removet fromQ.
10. P (t)← s, L(t)← L(s), C(t)← cst

11. Insertt in Q.

Lines1−3 initialize maps and insert prototypes inQ. The main
loop computes an optimum path fromS to every samples in a non-
decreasing order of cost (Lines4 − 10). At each iteration, a path of
minimum costC(s) is obtained inP when we remove its last nodes
from Q (Line 5). Ties are broken inQ using first-in-first-out policy.
That is, when two optimum paths reach an ambiguous samples with
the same minimum cost,s is assigned to the first path that reached it.
Note thatC(t) > C(s) in Line 6 is false whent has been removed
from Q and, therefore,C(t) 6= +∞ in Line 9 is true only when
t ∈ Q. Lines8 − 11 evaluate if the path that reaches an adjacent
nodet throughs is cheaper than the current path with terminust and
update the position oft in Q, C(t), L(t) andP (t) accordingly.

2.1. Training

We say thatS∗ is an optimum set of prototypes when Algorithm 1
minimizes the classification errors for everys ∈ Z1. S∗ can be
found by exploiting the theoretical relation between minimum-
spanning tree (MST) and optimum-path tree forfmax. The training
essentially consists of findingS∗ and an OPF classifier rooted atS∗.

By computing an MST in the complete graph(Z1, A), we obtain
a connected acyclic graph whose nodes are all samples ofZ1 and the
arcs are undirected and weighted by the distancesd between adjacent
samples. The spanning tree is optimum in the sense that the sum
of its arc weights is minimum as compared to any other spanning
tree in the complete graph. In the MST, every pair of samples is
connected by a single path which is optimum according tofmax.
That is, the minimum-spanning tree contains one optimum-path tree
for any selected root node.

The optimum prototypes are the closest elements of the MST
with different labels inZ1 (i.e., elements that fall in the frontier of the
classes). By removing the arcs between different classes, their adja-
cent samples become prototypes inS∗ and Algorithm 1 can compute
an optimum-path forest with minimum classification errors inZ1.
Note that, a given class may be represented by multiple prototypes
(i.e., optimum-path trees) and there must exist at least one prototype
per class.

2.2. Classification

For any samplet ∈ Z2, we consider all arcs connectingt with sam-
pless ∈ Z1, as thought were part of the training graph. Considering
all possible paths fromS∗ to t, we find the optimum pathP ∗(t) from
S∗ and labelt with the classλ(R(t)) of its most strongly connected
prototypeR(t) ∈ S∗. This path can be identified incrementally, by
evaluating the optimum costC(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the nodes∗ ∈ Z1 be the one that satisfies Equation 2
(i.e., the predecessorP (t) in the optimum pathP ∗(t)). Given that
L(s∗) = λ(R(t)), the classification simply assignsL(s∗) as the
class oft. An error occurs whenL(s∗) 6= λ(t).

3. DYNAMIC FEATURES FOR IRIS CHARACTERIZATION

The human eye is very sensitive to visible light. That is, the light
within the violet-red range causes some type of reaction to the eye,



from the cones and rods up to the sclera (the white outer part). For
example: the pupil contracts and dilates under the effect of the visi-
ble light, and the iris and the sclera exceptionally reflect within this
range. In order to capture an image of the human iris by using vis-
ible light, there is a problem: how to keep the natural reflexes on
the globe of the eye, iris and sclera surfaces from affecting the qual-
ity of the digitalized image? Several techniques are employed by
professional photographers in order to deviate the light beam, by ap-
propriately positioning the camera. Still, to acquire iris images at a
good resolution thus allowing for the extraction of features aiming
at the biometric recognition the photograph techniques cannot be
utilized because, in general, the camera must be placed frontally to
the iris and at a short distance. These images do not provide enough
quality for a dependable biometric recognition.

The near infrared (NIR) illumination generates good resolution
and definition images. However, due to the fact that they are not ”vis-
ible” to the human eye, they do not allow for the necessary stimuli
so that the pupil can perform the contraction and the dilation move-
ments. The visible light offers the necessary stimulus. Nevertheless,
the image quality is compromised, thus making the extraction of fea-
tures difficult. In short: how to capture images with NIR illumination
using visible light to contract and dilate the pupil, without causing
reflexes on the iris, thus extracting the dynamic features?

Costa and Gonzaga [4] addressed this problem by taking into ac-
count the human optic system anatomy [1]. The eye captures through
the cones and rods the light stimuli taken to the brain by the op-
tic nerve, so that vision can be processed. In the transmission of the
stimuli by the optic nerve, they pass through an area named optic chi-
asm. In this area, the mixture of the medium fibers of the optic nerve
takes place. Fibers of the right optic nerve mix with the left ones and
vice-versa. This causes the eyes to be connected, that is, the reflexes
to stimuli applied to one of the eyes are presented in both. Such
physiological function is denominated Consensual Reflex. This re-
flex is responsible for the synchronism of the movements for both
eyes.

In such a way, Costa and Gonzaga [4] developed a device which
performs different and independent tasks in each one of the eyes.
The left eye receives visible light stimuli (white) in specific periods
of time, controlled by the software developed, whereas the right eye
image is digitalized in a video sequence, under NIR illumination.
The acquisition device, connected to a computer, allows for the soft-
ware to control the illumination on an eye, applied to in specific pe-
riods of time, whereas the image of the other eye is digitalized, thus
forming a video sequence. The next section describes the method of
Costa and Gonzaga [4] to extract and to select the dynamic features.

3.1. Feature extraction

In order to enable the evaluation of the behavior of each one of the
features due to the illumination alteration conditions, five analysis
periods are established. The first one is composed of the entire video
(1,000 frames). The other periods are defined to record the precise
period of illumination transition. This way, the periods comprise the
following frames: (i) 1st period average of the 1,000 frames, (ii)
2nd period average between the frames 210 and 220, (iii) 3rd period
average between the frames 420 and 430, (iv) 4th period average
between the frames 630 and 640 and (v) 5th period average between
the frames 840 and 850.

Based on that, twelve different dynamic features are extracted:
1) Pupil circularity; 2) Pupil diameter; 3) Pupil contraction/dilation
time; 4) Pupil contraction/dilation rate; 5) Average of the gray levels
of the segmented iris; 6) Standard deviation of the gray levels of

the segmented iris; 7) Variation coefficient of the gray levels of the
segmented iris; 8) Correlation; 9) Angular Second Moment (ASM);
10) Entropy; 11) Contrast; 12) Inverse Difference Moment (IDM);

These twelve features above form the base to generate a feature
vector, and for each one of them the average is calculated within
each period. Costa and Gonzaga [4] argued that some performed
tests with the features confirmed the feasibility of the dynamic fea-
tures. However, a selection of the most discriminative and dynamic
features was performed through the Weka (Waikato Environment for
Knowledge Analysis) software [12], on order to reduce the dimen-
sionality of the feature vector, which was originally composed by
248 features.

4. EXPERIMENTAL RESULTS

We performed two series of experiments: in the former (Section 4.1)
we used 50% of the whole dataset for training and the remaining
50% for testing classifiers, and in the last one (Section 4.2) we ex-
ecuted the experiments with different training and test set size per-
centages to allow a comparison about the robustness of the classifiers
with respect to variations on the sets size. For both experiments,
we executed OPF, SVM-RBF (SVM with RBF as kernel function),
SVM-LINEAR (SVM without kernel mapping), ANN-MLP (ANN-
MLP trained by backpropagation algorithm) and Kohonen Self Or-
ganizing Maps (SOM) 10 times with randomly generated training
and test sets, to compute the mean accuracy and its standard devia-
tion, and the mean training and test execution times (in seconds).

For SVM-RBF, we used the latest version of the LibSVM
package [13] with Radial Basis Function (RBF) kernel, parameter
optimization and the one-versus-one strategy for the multi-class
problem. With respect to SVM-LINEAR, we used the LibLINEAR
package [14] withC parameter optimized by cross-validation. For
OPF we used the LibOPF [15], which is a library for the design of
optimum-path forest-based classifiers, and for ANN-MLP we used
the Fast Artificial Neural Network Library (FANN) [16]. The net-
work configuration isi:h1:h2:o, wherei = 22 (number of features),
h1 = h2 = 8 ando = 2 (number of classes) are the number of
neurons in the input, hidden and output layers, respectively. The
ANN-MLP was trained with a backpropagation algorithm, and its
architecture was empirically chosen. For SOM network we used
a lattice with 100×100 neurons with 10 iterations for algorithm
convergence.

4.1. Classifiers evaluation

We evaluate here the OPF, SVM-RBF, SVM-LINEAR, ANN-MLP
and SOM for dynamic iris recognition using 50% for training and
50% for testing. Table 1 shows the mean accuracies and mean train-
ing and classification times (in seconds) after 10 runnings with ran-
domly generated training and test sets.

Table 1. Mean accuracy and mean training and classification times
OPF, SVM-RBF, SVM-LINEAR, ANN-MLP and SOM.

Classifier Accuracy Training time Classif. Time
OPF 83.68±1.13 0.01 0.017

SVM-RBF 76.95±0.81 259.59 0.295
SVM-LINEAR 79.42±0.75 12.24 0.017

ANN-MLP 51.86±0.81 435.49 0.002
SOM 82.86±1.38 103.75 0.253



We can see that OPF and SOM obtained similar results if we take
into account the standard deviation, and outperformed all remaining
classifiers. However, the OPF classifier was much faster than SOM:
6900 times faster for training and 14.88 times faster for classifica-
tion. This results confirmed that OPF is similar to the state of the art
classification methodologies, but much faster [10].

4.2. Classifiers robustness

We evaluate the robustness of the classifiers with respect to varia-
tions on the training set size. We repeated the experiments shown
in previous section with different training and test set sizes for OPF,
SVM-RBF, SVM-LINEAR, ANN-MLP and SOM. Figure 1 displays
the mean accuracies over the test set after 10 rounds of experiments
for each training and test set size percentages configuration.
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Fig. 1. Robustness of the classifiers with respect to different training
and test size percentages.

We can see that OPF, SVM-RBF and SOM performed similar
curves, except for SVM-RBF with 40%-50% of the training set size.
We can see that ANN-MLP presented the worst results. One proba-
bly solution for that should be to use a collection of neural networks,
although this is not guaranteed to solve the problem as a whole.

5. CONCLUSIONS

In this paper we introduced a recently developed dynamic iris char-
acterization in the context of iris classification. Another main contri-
bution concerns with the OPF first usage for automatic iris recogni-
tion. Experimental results comparing OPF among SVM-RBF, SVM-
LINEAR, ANN-MLP and SOM have demonstrated the similarity
between OPF and SOM in terms of effectiveness for this purpose,
but the former was much faster both for training and classification
phases.

In order to assess the robustness of the classifiers regarding vari-
ations on the training set size, we also performed an extra experiment
with different percentages of the training set size. In this case, the
OPF, SVM-RBF and SOM demonstrated to be similar, except for
SVM-RBF with 40%-50% of training set size. Future works will be
guided by using OPF in the context of static iris recognition.
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